Skip to main content
Log in

Co-active neurofuzzy inference system for evapotranspiration modeling

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This study proposes co-active neuro-fuzzy inference system (CANFIS) for daily reference evapotranspiration (ET0) modeling by using daily atmospheric parameters obtained from California Irrigation Management Information System (CIMIS) database. The CANFIS model is trained and tested using three stations from different geographical locations in California. The model is compared with the well-known conventional ET0 models such as the CIMIS Penman equation, the Penman–Monteith equation standardized by the Food and Agriculture Organization (FAO-56 PM), the Hargreaves equation and the Turc equation. Meteorological variables; solar radiation, air temperature, relative humidity and wind speed taken from CIMIS database for 4 years (January 2002–December 2005) are used to evaluate the performance analysis of the models. Statistics such as average, standard deviation, minimum and maximum values, as well as criteria such as root mean square error (RMSE), the efficiency coefficient (E) and determination coefficient (R 2) are used to measure the performance of the CANFIS. Considerably well performance is achieved in modeling ET0 by using CANFIS. It is concluded from the results that CANFIS can be proposed as an alternative ET0 model to the existing conventional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksoy H, Guven A, Aytek A, Yuce MI, Unal NE (2007) Discussion of generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 52(5): 825–828

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome

  • ASCE Task Committee on Artificial Neural Networks in Hydrology. (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng 5(2):115–123

    Google Scholar 

  • ASCE Task Committee on Artificial Neural Networks in Hydrology. (2000b) Artificial neural networks in hydrology. II: Hydrol Appl J Hydrol Eng 5(2):124–137

  • Aytek A, Guven A, Yuce MI, Aksoy H (2008) An explicit neural network formulation for evapotranspiration. Hydrol Sci J 53(4)

  • Burrows WR, Walmsley J, Montpetit J, Faucher M (1998) In: CART- NEURO-FUZZY statistical data modeling, Part 2: Results, 14th conference on probability and statistics in the atmospheric sciences, Phoenix, pp 160–167

  • Deka P, Chandramouli V (2003) A fuzzy neural network model for deriving the river stage–discharge relationship. Hydrol Sci J 48(2): 197–209

    Article  Google Scholar 

  • Dong A, Grattan SR, Caroll JJ, Prashar CRK (1992) Estimation of daytime net radiation over well-watered grass. J Irrig Drain Eng 118(3): 466–479

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for prediction of crop water requirements. FAO irrig. and drain. paper No. 24 (Revised). Food and Agriculture Organization, Rome

  • Eching S, Moellenberndt D (1998) Technical elements of CIMIS, the California irrigation management information system, state of California. Resources Agency, Dept. Of Water Resources, Division of Planning and Local Assistance, Sacramento

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2): 96–99

    Google Scholar 

  • Ishak S, Trifiro F (2007) Neurol networks, transportation research circular E-C113. Artif Intell Transp 17–32

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Manage Cybern 23(3): 665–685

    Article  MathSciNet  Google Scholar 

  • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83: 378–405

    Article  Google Scholar 

  • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall, New Jersey

    Google Scholar 

  • Jin Y, Jiang J, Zhu J (1995) Neural network based fuzzy identification and its applications to modeling and control of complex systems. IEEE Trans Syst Man Cybern 25(6): 990–997

    Article  Google Scholar 

  • Kisi O (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50(4): 683–696

    Article  Google Scholar 

  • Kisi O (2006a) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51(6): 1092–1105

    Article  Google Scholar 

  • Kisi O (2006b) Evapotranspiration estimation using feedforward neurol networks. Nord Hydrol 37(3): 247–260

    Article  Google Scholar 

  • Kisi O (2006c) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329(3–4): 636–646

    Article  Google Scholar 

  • Kisi O (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21(6): 1925–1934

    Article  Google Scholar 

  • Kisi O, Ozturk O (2007) Adaptive neurofuzzy computing technique for evapotranspiration estimation. J Irrig Drain Eng ASCE 133(4): 368–379

    Article  Google Scholar 

  • Kumar M, Raghuwanshi NS, Singh R, Wallender WW, Pruitt WO (2002) Estimating evapotranspiration using artificial neural network. J Irrig Drain Eng ASCE 128(4): 224–233

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1): 233–241

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart Appl Math 2: 164–168

    MATH  MathSciNet  Google Scholar 

  • Maier HR, Dandy GC (2000) Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environ Model Softw 15: 101–124

    Article  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11: 431–441

    Article  MATH  MathSciNet  Google Scholar 

  • Monteith JL (1973) Principles of environmental physics. Edward Arnold Press, Kent

    Google Scholar 

  • Palit AK, Popovic D (1999) Forecasting chaotic time series using neuro-fuzzy approach. In: Proc IEEE IJCNN Washington DC, vol 3, pp 1538–1543

  • Palit AK, Popovic D (2000) Intelligent processing of time series using neuro-fuzzy adaptive genetic approach. In: Proc. of IEEE-ICIT Conference, Goa, India, vol 1, pp 141–146

  • Palit AK, Popovic D (2005) Computational intelligence in time series forecasting; theory and engineering applications. Springer, Heidelberg, 363 p

    MATH  Google Scholar 

  • Principe CJ, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: Ffundamentals through simulations. Wiley, London

    Google Scholar 

  • Saemi M, Ahmadi M (2008) Integration of genetic algorithm and a coactive neuro-fuzzy inference system for permeability prediction from well logs data. Transp Porous Med 71: 273–288

    Article  Google Scholar 

  • Shafie EA, Taha RM, Noureldin A (2007) A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam, Water Res. Management. doi:10.1007/s11269-006-9027-1

  • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng ASCE 129(3): 214–218

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst 15(1): 116–132

    MATH  Google Scholar 

  • Temesgen B, Allen RG, Jensen DT (1999) Adjusting temperature parameters to reflect well-watered conditions. J Irrig Drain Eng 125(1): 26–33

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain Eng ASCE 131(1): 73–84

    Article  Google Scholar 

  • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng ASCE 131(4): 316–323

    Article  Google Scholar 

  • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. J. Irrig Drain Eng ASCE 129(6): 454–457

    Article  Google Scholar 

  • Turc L (1961) Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Ann Agron 12: 13–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aytek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aytek, A. Co-active neurofuzzy inference system for evapotranspiration modeling. Soft Comput 13, 691–700 (2009). https://doi.org/10.1007/s00500-008-0342-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0342-8

Keywords

Navigation