Skip to main content
Log in

Robustness of stability of time-varying index-1 DAEs

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study exponential stability and its robustness for time-varying linear index-1 differential-algebraic equations. The effect of perturbations on the leading coefficient matrix is investigated. An appropriate class of allowable perturbations is introduced. Robustness of exponential stability with respect to a certain class of perturbations is proved in terms of the Bohl exponent and perturbation operator. Finally, a stability radius involving these perturbations is introduced and investigated. In particular, a lower bound for the stability radius is derived. The results are presented by means of illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. I thank the Associate Editor who handled this paper for pointing this out.

Abbreviations

\({\mathbb {N}},\ {\mathbb {N}}_0,\ {\mathbb {R}}_+\) :

The set of natural numbers \({\mathbb {N}}\), \({\mathbb {N}}_0={\mathbb {N}}\cup \{0\}\), \({\mathbb {R}}_+=[0,\infty )\)

\({{\mathrm{im}}}A, \ker A\) :

The image and kernel of the matrix \(A\in {\mathbb {R}}^{m\times n}\), resp.

\( {\mathbf {Gl}}_n({\mathbb {R}})\) :

The set of all invertible \(n\times n\) matrices over \({\mathbb {R}}\)

\(\Vert x\Vert \) :

\(:= \sqrt{x^{\top } x}\), the Euclidean norm of \(x \in {\mathbb {R}}^n\)

\(\Vert A\Vert \) :

\(:=\sup \left\{ \Vert Ax\Vert \left| \Vert x\Vert =1 \right. \right\} \), induced matrix norm of \(A \in {\mathbb {R}}^{n\times m}\)

\({\mathcal {C}}^k({\mathcal {I}}; {\mathcal { S}})\) :

The set of \(k\)-times continuously differentiable functions \(f:{\mathcal {I}}\rightarrow {\mathcal {S}}\) from a set \({\mathcal {I}}\subseteq {\mathbb {R}}\) to a vector space \({\mathcal { S}}\), \(k\in {\mathbb {N}}_0\)

\({\mathcal {B}}({\mathcal {I}}; {\mathcal {S}})\) :

The set of continuous and bounded functions \(f:{\mathcal {I}}\rightarrow {\mathcal {S}}\) from a set \({\mathcal {I}}\subseteq {\mathbb {R}}\) to a vector space \({\mathcal {S}}\)

\({1\!\!1}_{\mathcal {M}}(t)\) :

= \(\left\{ \begin{array}{ll} 1, &{}\quad \hbox {if}\ t\in {\mathcal {M}},\\ 0, &{} \quad \hbox {otherwise,}\end{array}\right. \) for \(t\in {\mathbb {R}}_+\) and \({\mathcal {M}}\subseteq {\mathbb {R}}_+\)

\({{\mathrm{dom}}}f\) :

The domain of the function \(f\)

\(\Vert f\Vert _\infty \) :

\(:=\sup \left\{ \Vert f(t)\Vert \left| t\in {{\mathrm{dom}}}f \right. \right\} \) the infinity norm of the function \(f\)

\(f\left. \right| _{{\mathcal {M}}}\) :

The restriction of the function \(f\) on a set \({\mathcal {M}}\subseteq {{\mathrm{dom}}}f\)

\(L^2({\mathcal {I}}; {\mathcal {S}})\) :

The set of measurable and square integrable functions \(f:{\mathcal {I}}\rightarrow {\mathcal {S}}\) from a set \({\mathcal {I}}\subseteq {\mathbb {R}}\) to a vector space \({\mathcal {S}}\)

\(\Vert f\Vert _{L^2[t_0,\infty )}\) :

\(:=\left( \int _{t_0}^\infty \Vert f(t)\Vert ^2\, \mathrm{\, d} t \,\right) ^{1/2}\) the \(L^2\)-norm of the function \(f\in L^2([t_0,\infty );{\mathcal {S}})\), \(t_0\in {\mathbb {R}}\)

References

  1. Åström KJ, Wittenmark B (1994) Adaptive control, 2nd edn. Addison-Wesley, Boston

    Google Scholar 

  2. Balla K, Kurina GA, März R (2006) Index criteria for differential algebraic equations arising from linear-quadratic optimal control problems. J Dyn Control Syst 12(3):289–311

    Article  MATH  MathSciNet  Google Scholar 

  3. Balla K, März R (2002) A unified approach to linear differential algebraic equations and their adjoints. Z Anal Anwend 21:783–802

    Article  MATH  Google Scholar 

  4. Berger T (2012) Bohl exponent for time-varying linear differential-algebraic equations. Int J Control 85(10):1433–1451

    Article  MATH  Google Scholar 

  5. Berger T, Ilchmann A (2013) On stability of time-varying linear differential-algebraic equations. Int J Control 86(6):1060–1076

    Article  MATH  MathSciNet  Google Scholar 

  6. Bohl P (1913) Über Differentialgleichungen. J für Reine und Angewandte Mathematik 144:284–313

    Google Scholar 

  7. Bracke M (2000) On stability radii of parametrized, linear differential-algebraic systems. PhD Thesis, Fachbereich Mathematik, Universität Kaiserslautern, Kaiserslautern

  8. Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems in differential-algebraic equations. North-Holland, Amsterdam

    MATH  Google Scholar 

  9. Byers R, Nichols NK (1993) On the stability radius of a generalized state-space system. Linear Algebra Appl 188–189:113–134

    Article  MathSciNet  Google Scholar 

  10. Campbell SL (1995) Linearization of DAEs along trajectories. Z Angew Math Phys 46:70–84

    Article  MATH  MathSciNet  Google Scholar 

  11. Chyan C-J, Du NH, Linh VH (2008) On data-dependence of exponential stability and stability radii for linear time-varying differential-algebraic systems. J Differ Equ 245:2078–2102

    Article  MATH  Google Scholar 

  12. Dai L (1989) Singular control systems. Number 118 in Lecture Notes in Control and Information Sciences. Springer, Berlin

  13. Daleckiĭ JL, Kreĭn MG (1974) Stability of solutions of differential equations in banach spaces. Number 43 in Translations of Mathematical Monographs. American Mathematical Society, Providence

  14. De Terán F, Dopico FM, Moro J (2008) First order spectral perturbation theory of square singular matrix pencils. Linear Algebra Appl 429:548–576

    Article  MATH  MathSciNet  Google Scholar 

  15. Du NH, Linh VH (2006) On the robust stability of implicit linear systems containing a small parameter in the leading term. IMA J Math Control Inf 23:67–84 (published online July 27, 2005)

    Google Scholar 

  16. Du NH, Linh VH (2006) Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations. J Differ Equ 230(2):579–599

    Google Scholar 

  17. Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  18. Estévez Schwarz D, Tischendorf C (2000) Structural analysis for electric circuits and consequences for MNA. Int J Circuit Theory Appl 28(2):131–162

  19. Fang C-H, Chang F-R (1993) Analysis of stability robustness for generalized state-space systems with structured perturbations. Syst Control Lett 21:109–114

    Article  MATH  MathSciNet  Google Scholar 

  20. Griepentrog E, März R (1986) Differential-algebraic equations and their numerical treatment. Number 88 in Teubner-Texte zur Mathematik. Teubner, Leipzig

  21. Hairer E, Wanner G (1991) Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer, Berlin

    Book  MATH  Google Scholar 

  22. Hanke M (1990) On the regularization of index 2 differential-algebraic equations. J Math Anal Appl 151:236–253

    Article  MATH  MathSciNet  Google Scholar 

  23. Hinrichsen D, Ilchmann A, Pritchard AJ (1989) Robustness of stability of time-varying linear systems. J Differ Equ 82(2):219–250

    Article  MATH  MathSciNet  Google Scholar 

  24. Hinrichsen D, Pritchard AJ (1986) Stability radii of linear systems. Syst Control Lett 7:1–10

    Article  MATH  MathSciNet  Google Scholar 

  25. Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and the algebraic Riccati equation. Syst Control Lett 8:105–113

    Article  MATH  MathSciNet  Google Scholar 

  26. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I. Modelling, state space analysis, stability and robustness, volume 48 of Texts in Applied Mathematics. Springer, Berlin

  27. Ilchmann A, Mehrmann V (2005) A behavioural approach to time-varying linear systems. Part 1: general theory. SIAM J Control Optim 44(5):1725–1747

    Article  MathSciNet  Google Scholar 

  28. Iwata S, Takamatsu M, Tischendorf C (2012) Tractability index of hybrid equations for circuit simulation. Math Comput 81(278):923–939

    Article  MATH  MathSciNet  Google Scholar 

  29. Jacob B (1998) A formula for the stability radius of time-varying systems. J Differ Equ 142:167–187

    Article  MATH  Google Scholar 

  30. Kumar A, Daoutidis P (1999) Control of nonlinear differential algebraic equation systems with applications to chemical processes, volume 397 of Chapman and Hall/CRC Research Notes in Mathematics. Chapman and Hall, Boca Raton

  31. Kunkel P, Mehrmann V (2006) Differential-algebraic equations. Analysis and numerical solution. EMS Publishing House, Zürich

    Book  MATH  Google Scholar 

  32. Lamour R, März R, Tischendorf C (2013) Differential algebraic equations: a projector based analysis, volume 1 of Differential-Algebraic Equations Forum. Springer, Heidelberg

  33. Linh VH, Mehrmann V (2009) Lyapunov, Bohl and Sacker-Sell spectral intervals for differential-algebraic equations. J. Dyn Differ Equ 21:153–194

    Google Scholar 

  34. März R (1991) Numerical methods for differential algebraic equations. Acta Numer, 141–198

  35. März R (2002) The index of linear differential algebraic equations with properly stated leading terms. Results Math. 42:308–338

    Article  MATH  MathSciNet  Google Scholar 

  36. Mehrmann V (2012) Index concepts for differential-algebraic equations. Institute of Mathematics, TU Berlin (preprint)

    Google Scholar 

  37. Qiu L, Davison EJ (1992) The stability robustness of generalized eigenvalues. IEEE Trans Autom Control 37(6):886–891

    Article  MATH  MathSciNet  Google Scholar 

  38. Riaza R (2008) Differential-algebraic systems. Analytical aspects and circuit applications. World Scientific Publishing, Basel

    Book  MATH  Google Scholar 

  39. Takamatsu M, Iwata S (2010) Index characterization of differential-algebraic equations in hybrid analysis for circuit simulation. Int J Circuit Theory Appl 38:419–440

    MATH  Google Scholar 

  40. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Acknowledgments

I am indebted to Achim Ilchmann (TU Ilmenau), Stephan Trenn (TU Kaiserslautern), and Volker Mehrmann (TU Berlin) for several constructive discussions. I also thank the three anonymous referees for their valuable comments which helped to improve the paper. This work was supported by the DFG grant Il25/9 and partially supported by the DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, T. Robustness of stability of time-varying index-1 DAEs. Math. Control Signals Syst. 26, 403–433 (2014). https://doi.org/10.1007/s00498-013-0123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-013-0123-5

Keywords

Navigation