Skip to main content
Log in

Weakly coprime factorization and state-feedback stabilization of discrete-time systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The LQ-optimal state feedback of a finite-dimensional linear time-invariant system determines a coprime factorization NM −1 of the transfer function. We show that the same is true also for infinite-dimensional systems over arbitrary Hilbert spaces, in the sense that the factorization is weakly coprime, i.e., Nf, \({Mf \in \mathcal {H}^2 \Longrightarrow f \in \mathcal {H}^2}\) for every function f. The factorization need not be Bézout coprime. We prove that every proper quotient of two bounded holomorphic operator-valued functions can be presented as the quotient of two bounded holomorphic weakly coprime functions. This result was already known for matrix-valued functions with the classical definition gcd(N, M) = I, which we prove equivalent to our definition. We give necessary and sufficient conditions and further results for weak coprimeness and for Bézout coprimeness. We then establish a variant of the inner–outer factorization with the inner factor being “weakly left-invertible”. Most of our results hold also for continuous-time systems and many are new also in the scalar-valued case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arveson W (1975) Interpolation problems in nest algebras. J Funct Anal 20: 208–233

    Article  MATH  MathSciNet  Google Scholar 

  2. Curtain RF, Opmeer MR (2006) Normalized doubly coprime factorizations for infinite-dimensional linear systems. Math Control Signals Syst 18(1): 1–31

    Article  MATH  MathSciNet  Google Scholar 

  3. Curtain RF, Opmeer MR (2007) The Nehari problem for discrete-time infinite-dimensional systems. In: Proceedings of the 2007 European Control Conference (ECC 2007) (Kos, Greece), July 2007

  4. Curtain RF, Opmeer MR (2008) Coprime factorization and robustly stabilizing controllers for discrete-time infinite-dimensional systems (manuscript)

  5. Curtain RF (2006) Robustly stabilizing controllers with respect to left-coprime factor perturbations for infinite-dimensional linear systems. Syst Control Lett 55(7): 509–517

    Article  MATH  MathSciNet  Google Scholar 

  6. Curtain RF, Weiss G, Weiss M (2001) Stabilization of irrational transfer functions by controllers with internal loop, Systems, approximation, singular integral operators, and related topics. Oper Theory Adv Appl, vol 129. Birkhäuser, Basel, pp 179–207

  7. Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New York

    MATH  Google Scholar 

  8. Francis BA (1987) A course in H control theory. Lecture Notes in Control and Inform. Sci., vol 88. Springer, Berlin

    Google Scholar 

  9. Fuhrmann PA (1981) Linear systems and operators in Hilbert space. McGraw-Hill, New York

    MATH  Google Scholar 

  10. Georgiou TT, Smith MC (1993) Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2[0, ∞). Math Control Signals Syst 6: 195–223

    Article  MATH  MathSciNet  Google Scholar 

  11. Hille E, Phillips RS (1957) Functional analysis and semi-groups, revised edn. AMS, Providence

    Google Scholar 

  12. Inouye Y (1988) Parametrization of compensators for linear systems with transfer functions of bounded type. In: Proceedings of the 27th conference on decision and control, Austin, Texas, pp 2083–2088

  13. Khargonekar PP, Shim D (1994) Maximally robust state-feedback controllers for stabilization of plants with normalized right coprime factor uncertainty. Syst Control Lett 22(1): 1–4

    Article  MATH  MathSciNet  Google Scholar 

  14. Mikkola KM (2002) Infinite-dimensional linear systems, optimal control and algebraic Riccati equations. Doctoral dissertation, technical report A452, Institute of Mathematics, Helsinki University of Technology, Espoo, Finland. http://www.math.hut.fi/~kmikkola/research/

  15. Mikkola KM (2006) State-feedback stabilization of well-posed linear systems. Integral Equ Oper Theory 55(2): 249–271

    Article  MATH  MathSciNet  Google Scholar 

  16. Mikkola KM (2007) Coprime factorization and dynamic stabilization of transfer functions. SIAM J Control Optim 45(2): 1988–2010

    Article  MATH  MathSciNet  Google Scholar 

  17. Mikkola KM (2007) Different types of stabilizability and detectability of well-posed linear systems (manuscript)

  18. Mikkola KM (2007) Optimal state feedback and stabilizing compensators are real when data is real. In: Proceedings of the 2007 European Control Conference (ECC 2007) (Kos, Greece), July 2007

  19. Mikkola KM (2008) Weakly coprime factorization and continuous-time systems. IMA J Math Control Inform, 37 pp (to appear)

  20. Mikkola KM (2009) Hankel and Toeplitz operators on nonseparable Hilbert spaces. Ann Acad Sci Fenn Math 34(1), 24 pp (to appear)

    Google Scholar 

  21. Mikkola KM, Staffans OJ (2004) Coprime factorizations and stabilizability of infinite-dimensional linear systems. In: 16th international symposium on mathematical theory of networks and systems (MTNS 2004), Leuven, Belgium

  22. Nikolski NK (2002) Operators, functions, and systems: an easy reading, vol 1. Mathematical Surveys and Monographs, vol 92. American Mathematical Society, Providence, RI, Hardy, Hankel, and Toeplitz, Translated from the French by Andreas Hartmann

  23. Opmeer MR, Curtain RF (2004) Linear quadratic Gaussian balancing for discrete-time infinite-dimensional linear systems. SIAM J Control Optim 43(4): 1196–1221

    Article  MATH  MathSciNet  Google Scholar 

  24. Quadrat A (2003) The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. I. (Weakly) doubly coprime factorizations. SIAM J Control Optim 42(1): 266–299 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  25. Quadrat A (2003) The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. II. Internal stabilization. SIAM J Control Optim 42(1): 300–320 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  26. Quadrat A (2004) On a general structure of the stabilizing controllers based on stable range. SIAM J Control Optim 42(6): 2264–2285 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  27. Quadrat A (2005) An algebraic interpretation to the operator-theoretic approach to stabilizability. I. SISO systems. Acta Appl Math 88(1): 1–45

    Article  MATH  MathSciNet  Google Scholar 

  28. Quadrat A (2006) A lattice approach to analysis and synthesis problems. Math Control Signals Syst 18(2): 147–186

    Article  MATH  MathSciNet  Google Scholar 

  29. Rosenblum M, Rovnyak J (1985) Hardy classes and operator theory. Oxford University Press, New York, Oxford

    MATH  Google Scholar 

  30. Salamon D (1989) Realization theory in Hilbert space. Math Syst Theory 21: 147–164

    Article  MATH  MathSciNet  Google Scholar 

  31. Sz.-Nagy B, Foiaş C (1976) On contractions similar to isometries and toeplitz operators. Ann Acad Sci Fenn Ser A I 2: 553–564

    Google Scholar 

  32. Smith MC (1989) On stabilization and the existence of coprime factorizations. IEEE Trans Automat Control 34(9): 1005–1007

    Article  MATH  MathSciNet  Google Scholar 

  33. Staffans OJ (1997) Quadratic optimal control of stable well-posed linear systems. Trans Am Math Soc 349: 3679–3715

    Article  MATH  MathSciNet  Google Scholar 

  34. Staffans OJ (1998) Coprime factorizations and well-posed linear systems. SIAM J Control Optim 36: 1268–1292

    Article  MATH  MathSciNet  Google Scholar 

  35. Staffans OJ (2005) Well-Posed Linear Systems. Encyclopedia Math Appl, vol 103. Cambridge University Press, Cambridge

    Google Scholar 

  36. Staffans OJ, Weiss G (2002) Transfer functions of regular linear systems. Part II. the system operator and the Lax-Phillips semigroup. Trans Am Math Soc 354(8): 3229–3262

    Article  MATH  MathSciNet  Google Scholar 

  37. Tolokonnikov VA (1981) Estimates in the Carleson corona theorem, ideals of the algebra H , a problem of Sz.-Nagy. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOM‘I) 113:178–198, 267

  38. Treil SR (1989) Angles between co-invariant subspaces, and the operator corona problem. the Szökefalvi–Nagy problem. Soviet Math Dokl 38(2): 394–399

    MathSciNet  Google Scholar 

  39. Treil SR (1992) The stable rank of the algebra H equals 1. J Funct Anal 109(1): 130–154

    Article  MATH  MathSciNet  Google Scholar 

  40. Treil SR (2004) An operator Corona theorem. Indiana Univ Math J 53(6): 1763–1780

    Article  MATH  MathSciNet  Google Scholar 

  41. Vaseršteĭn LN (1971) Stable rank of rings and dimensionality of topological spaces. Funct Anal Appl 5(2): 102–110

    Article  MATH  Google Scholar 

  42. Vidyasagar M (1985) Control system synthesis: a factorization approach. MIT Press Ser. Signal Process Optim Control, 7. MIT Press, Cambridge, MA

  43. von Renteln M (1977) Hauptideale und äussere Funktionen im Ring H . Arch Math (Basel) 28(5): 519–524

    MathSciNet  Google Scholar 

  44. Weiss G (1994) Transfer functions of regular linear systems. Part I. characterizations of regularity. Trans Am Math Soc 342: 827–854

    Article  MATH  Google Scholar 

  45. Weiss G, Rebarber R (2000) Optimizability and estimatability for infinite-dimensional linear systems. SIAM J Control Optim 39(4): 1204–1232

    Article  MATH  MathSciNet  Google Scholar 

  46. Weiss G, Zwart H (1998) An example in linear quadratic optimal control. Syst Control Lett 33: 339–349

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle M. Mikkola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkola, K.M. Weakly coprime factorization and state-feedback stabilization of discrete-time systems. Math. Control Signals Syst. 20, 321–350 (2008). https://doi.org/10.1007/s00498-008-0034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-008-0034-z

Keywords

Navigation