Skip to main content
Log in

Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis

  • Review
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

The arabinogalactan protein (AGP) family is one of the most complex protein families and is ubiquitous in the plant kingdom. Moreover, it has been demonstrated to play various roles during plant reproduction. A typical AGP contains a hydroxyproline-rich core protein with high heterogeneity and varying numbers of polysaccharide side chains. However, the functions of the polysaccharide components (i.e. AG sugar chains) remain largely unknown due to the general difficulties associated with studying sugar chains in glycobiology. In recent years, methodological breakthroughs have resulted in substantial progress in AGP research. Here, we summarise the multiple roles of AGPs during plant gametophyte development and male–female communication, with a focus on recent advances. In addition, we discuss the analytical tools used in AGP research, and the biosynthesis and function of AG sugar chains. A comprehensive understanding of the AGP family will help clarify the mechanisms precisely controlling reproductive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu D, Liang Y, Liu X, Himmeldirk K, Faik A, Kieliszewski M, Held M, Showalter AM (2013) Functional identification of a hydroxyproline-O-galactosyltransferase specific for arabinogalactan protein biosynthesis in Arabidopsis. J Biol Chem 288:10132–10143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Li X, Lv Y, Ding L (2015) Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays. Front Plant Sci 6:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  CAS  PubMed  Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  CAS  PubMed  Google Scholar 

  • Coimbra S, Jones B, Pereira LG (2008) Arabinogalactan proteins (AGPs) related to pollen tube guidance into the embryo sac in Arabidopsis. Plant Signal Behav 3:455–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Coimbra S, Costa M, Jones B, Mendes MA, Pereira LG (2009) Pollen grain development is compromised in Arabidopsis Agp6 Agp11 null mutants. J Exp Bot 60:3133–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corral-Martinez P, Garcia-Fortea E, Bernard S, Driouich A, Seguí-Simarro JM (2016) Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus. Plant Cell Physiol 57:2161–2174

    Article  CAS  PubMed  Google Scholar 

  • Da CM, Lopes AL, Amorim MI, Coimbra S (2017) Immunolocalization of AGPs and pectins in Quercus suber Gametophytic Structures. Methods Mol Biol 1669:117–137

    Article  Google Scholar 

  • Demesa-Arevalo E, Vielle-Calzada JP (2013) The classical arabinogalactan protein AGP18 mediates megaspore selection in Arabidopsis. Plant Cell 25:1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilokpimol A, Geshi N (2014) Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal Behav 9:e28891

    Article  PubMed  PubMed Central  Google Scholar 

  • Dilokpimol A, Poulsen CP, Vereb G, Kaneko S, Schulz A, Geshi N (2014) Galactosyltransferases from Arabidopsis thaliana in the biosynthesis of type II arabinogalactan: molecular interaction enhances enzyme activity. BMC Plant Biol 14:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberle CA, Anderson NO, Clasen BM, Hegeman AD, Smith AG (2013) PELPIII: the class III pistil-specific extensin-like Nicotiana tabacum proteins are essential for interspecific incompatibility. Plant J 74:805–814

    Article  CAS  PubMed  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fincher GB, Sawyer WH, Stone BA (1974) Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem J 139:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fincher GB, Stone BA, Clarke AE (1983) Arabinogalactan-proteins: structure, biosynthesis and functions. Annu Rev Plant Physiol 34:47–70

    Article  CAS  Google Scholar 

  • Gane AM, Craik D, Munro SL, Howlett GJ, Clarke AE, Bacic A (1995) Structural analysis of carbohydrate moiety of arabinogalactan-proteins from stigma and styles of Nicotiana alata. Carbohydr Res 277:67–85

    Article  CAS  PubMed  Google Scholar 

  • Geshi N, Johansen JN, Dilokpimol A, Rolland A, Belcram K, Verger S, Kotake T, Tsumuraya Y, Kaneko S, Tryfona T, Dupree P, Scheller HV, Höfte H, Mouille G (2013) A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in Arabidopsis. Plant J 76:128–137

    CAS  PubMed  Google Scholar 

  • Gille S, SharmaV Baidoo EEK, Keasling JD, Scheller HV, Pauly M (2013) Arabinosylation of a yariv-precipitable cell wall polymer impacts plant growth as exemplified by the Arabidopsis glycosyltransferase mutant ray1. Mol Plant 6:1369–1372

    Article  CAS  PubMed  Google Scholar 

  • Hancock CN, Kent L, McClure BA (2005) The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. Plant J 43:716–723

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Guo X, Cyprys P, Zhang Y, Bleckmann A, Cai L, Huang Q, Luo Y, Gu H, Dresselhaus T, Dong J, Qu LJ (2016) Maternal ENODLs are required for pollen tube reception in Arabidopsis. Curr Biol 26:2343–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Article  Google Scholar 

  • Jiao J, Mizukami AG, Sankaranarayanan S, Yamguchi J, Itami K, Higashiyawma T (2017) Structure-activity relation of AMOR sugar molecule that activates pollen-tubes for ovular guidance. Plant Physiol 173:354–363

    Article  CAS  PubMed  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KL, Cassin AM, Lonsdale A, Wong GK, Soltis DE, Miles NW, Melkonian M, Melkonian B, Deyholos MK, Leebens-Mack J, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Carpenter EJ, Bacic A, Doblin MS, Schultz CJ (2017a) Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant Physiol 174:904–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ (2017b) Pipeline to Identify hydroxyproline-rich glycoproteins. Plant Physiol 174:886–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa K, Tryfona T, Yoshimi Y, Hayashi Y, Kawauchi S, Antonov L, Tanaka H, Takahashi T, Kaneko S, Dupree P, Tsumuraya Y, Kotake T (2013) β-Galactosyl Yariv reagent binds to the beta-1,3-galactan of arabinogalactan proteins. Plant Physiol 161:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoch E, Dilokpimol A, Tryfona T, Poulsen CP, Xiong G, Harholt J, Petersen BL, Ulvskov P, Hadi MZ, Kotake T, Tsumuraya Y, Pauly M, Dupree P, Geshi N (2013) A β-glucuronosyltransferase from Arabidopsis thaliana involved in biosynthesis of type II arabinogalactan has a role in cell elongation during seedling growth. Plant J 76:1016–1029

    Article  CAS  PubMed  Google Scholar 

  • Knoch E, Dilokpimol A, Geshi N (2014) Arabinogalactan proteins: focus on carbohydrate active enzymes. Front Plant Sci 5:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Motose H, Iwamoto K, Fukuda H (2011) Expression and genome-wide analysis of the xylogen-type gene family. Plant Cell Physiol 52:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2008) Properties of family 79 beta-glucuronidases that hydrolyze beta-glucuronosyl and 4-O-methyl-beta-glucuronosyl residues of arabinogalactan-protein. Carbohydr Res 343:1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H, Tsumuraya Y (2004) Molecular cloning and expression in Escherichia coli of a Trichoderma viride endo-β-(1 → 6)-galactanase gene. Biochem J 377:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamport D, Tan L, Held MA, Kieliszewski MJ (2018) Pollen tube growth and guidance: occam’s razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. New Phytol 217:491–500

    Article  CAS  PubMed  Google Scholar 

  • Levitin B, Richter D, Markovich I, Zik M (2008) Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis. Plant J 56:351–363

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yu M, Geng LL, Zhao J (2010) The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis. Plant J 64:482–497

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Dong H, Zhang F, Qiu L, Wang F, Cao J, Huang L (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot 113:777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind JL, Bacic A, Clarke AE, Anderson MA (1994) A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J 6:491–502

    Article  CAS  PubMed  Google Scholar 

  • Losada JM, Herrero M (2012) Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Ann Bot 110:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yan C, Li H, Wu W, Liu Y, Wang Y, Chen Q, Ma H (2017) Bioinformatics prediction and evolution analysis of arabinogalactan proteins in the plant kingdom. Front Plant Sci 8:66

    PubMed  PubMed Central  Google Scholar 

  • Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashiguchi K, Asami T, Suzuki Y (2009) Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem 73:2452–2459

    Article  CAS  PubMed  Google Scholar 

  • Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garénaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T (2016) The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance. Curr Biol 26:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats W (2008) High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj J 25:37–48

    Article  CAS  PubMed  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  CAS  PubMed  Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicre-Gibouin M, Mollet JC, Driouich A (2012) Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. Ann Bot 110:383–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguema-Ona E, Vicre-Gibouin M, Cannesan MA, Driouich A (2013) Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci 18:440–449

    Article  CAS  PubMed  Google Scholar 

  • Ogawa-Ohnishi M, Matsubayashi Y (2015) Identification of three potent hydroxyproline O-galactosyltransferases in Arabidopsis. Plant J 81:736–746

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Garcia DLGJ, Gomez-Jimenez MC, Fernandez-Garcia N (2017) Arabinogalactan proteins are involved in salt-adaptation and vesicle trafficking in tobacco BY-2 cell cultures. Front Plant Sci 8:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Penell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane arabinogalactan protein epitope in Oilseed rape flowers. Plant Cell 3:1317–1326

    Article  Google Scholar 

  • Pennell RI, Roberts K (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Nature 344:547–549

    Article  Google Scholar 

  • Pereira LG, Coimbra S, Oliveira H, Monteiro L, Sottomayor M (2006) Expression of arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana. Planta 223:374–380

    Article  CAS  PubMed  Google Scholar 

  • Pereira AM, Masiero S, Nobre MS, Costa ML, Solís MT, Testillano PS, Sprunck S, Coimbra S (2014) Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. J Exp Bot 65:5459–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira AM, Pereira LG, Coimbra S (2015) Arabinogalactan proteins: rising attention from plant biologists. Plant Reprod 28:1–15

    Article  CAS  PubMed  Google Scholar 

  • Pereira AM, Lopes AL, Coimbra S (2016a) Arabinogalactan proteins as interactors along the crosstalk between the pollen tube and the female tissues. Front Plant Sci 7:1895

    PubMed  PubMed Central  Google Scholar 

  • Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S (2016b) “Love is strong, and you’re so sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol Plant 9:601–614

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhao J (2006) Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of beta-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot 57:2061–2074

    Article  CAS  PubMed  Google Scholar 

  • Ruprecht C, Bartetzko MP, Senf D, Dallabernadina P, Boos I, Andersen MCF, Kotake T, Knox JP, Hahn MG, Clausen MH, Pfrengle F (2017) A synthetic glycan microarray enables epitope mapping of plant cell wall glycan-directed antibodies. Plant Physiol 175:1094–1104

    Article  PubMed  Google Scholar 

  • Sankaranarayanan S, Higashiyama T (2018) Capacitation in plant and animal fertilization. Trends Plant Sci 23:129–139

    Article  CAS  PubMed  Google Scholar 

  • Schultz CJ, Johnson KL, Currie G, Bacic A (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12:1751–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz CJ, Rumsewicz MP, Johnson KL, Jones BJ, Gaspar YM, Bacic A (2002) Using genomic resources to guide research directions: the arabinogalactan protein gene family as a test case. Plant Physiol 129:1448–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM, Keppler BD, Liu X, Lichtenberg J, Welch LR (2016) Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in Populus trichocarpa. BMC Plant Biol 16:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Xu J, Yang J, Kieliszewski MJ, Showalter AM (2005) The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol 46:975–984

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, Lampugnani ER, Doblin MS, Bacic A, Ishiguro S (2017) KNS4/UPEX1: a type II arabinogalactan beta-(1,3)-galactosyltransferase required for pollen exine development. Plant Physiol 173:183–205

    Article  CAS  PubMed  Google Scholar 

  • Takata R, Tokita K, Mori S, Shimoda R, Harada N, Ichinose H, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2010) Degradation of carbohydrate moieties of arabinogalactan-proteins by glycoside hydrolases from Neurospora crassa. Carbohydr Res 345:2516–2522

    Article  CAS  PubMed  Google Scholar 

  • Tan H, Liang W, Hu J, Zhang D (2012) MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Dev Cell 22:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tryfona T, Liang HC, Kotake T, Tsumuraya Y, Stephens E, Dupree P (2012) Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol 160:653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58:46–56

    Article  PubMed  Google Scholar 

  • Willats WG, Marcus SE, Knox JP (1998) Generation of monoclonal antibody specific to (1-5)-alpha-L-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Wong E, Ogdahl J, Cheung AY (2000) A pollen tube growth-promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J 22:165–176

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Williams M, Bernard S, Driouich A, Showalter AM, Faik A (2010) Functional identification of two nonredundant Arabidopsis alpha(1,2)fucosyltransferases specific to arabinogalactan proteins. J Biol Chem 285:13638–13645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WC, Shi DQ, Chen YH (2010) Female gametophyte development in flowering plants. Annu Rev Plant Biol 61:89–108

    Article  CAS  PubMed  Google Scholar 

  • Yariv J, Kalb AJ, Katchalski E (1967) Isolation of an L-fucose binding protein from Lotus tetragonolobus seed. Nature 215:890–891

    Article  CAS  PubMed  Google Scholar 

  • Yates EA, Valdor JF, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TH was supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas Nos. JP16H06465, JP16H06464, and JP16K21727) and by Mizutani Foundation for Glycoscience (No. 180190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Higashiyama.

Additional information

Communicated by Mengxiang Sun.

A contribution to the special issue ‘Plant Reproduction Research in Asia’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Higashiyama, T. Arabinogalactan proteins and their sugar chains: functions in plant reproduction, research methods, and biosynthesis. Plant Reprod 31, 67–75 (2018). https://doi.org/10.1007/s00497-018-0329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-018-0329-2

Keywords

Navigation