Skip to main content
Log in

Using proteomics to study sexual reproduction in angiosperms

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

While a relative latecomer to the postgenomics era of functional biology, the application of mass spectrometry-based proteomic analysis has increased exponentially over the past 10 years. Some of this increase is the result of transition of chemists, physicists, and mathematicians to the study of biology, and some is due to improved methods, increased instrument sensitivity, and better techniques of bioinformatics-based data analysis. Proteomic Biological processes are typically studied in isolation, and seldom are efforts made to coordinate results obtained using structural, biochemical, and molecular-genetic strategies. Mass spectrometry-based proteomic analysis can serve as a platform to bridge these disparate results and to additionally incorporate both temporal and anatomical considerations. Recently, proteomic analyses have transcended their initial purely descriptive applications and are being employed extensively in studies of posttranslational protein modifications, protein interactions, and control of metabolic networks. Herein, we provide a brief introduction to sample preparation, comparison of gel-based versus gel-free methods, and explanation of data analysis emphasizing plant reproductive applications. We critically review the results from the relatively small number of extant proteomics-based analyses of angiosperm reproduction, from flowers to seedlings, and speculate on the utility of this strategy for future developments and directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CM:

Central metabolism

CS:

Cell structure

1-DE:

One-dimensional electrophoresis

2-DE:

Two-dimensional electrophoresis

DIGE:

Difference in-gel electrophoresis

GelC-:

A 1-DE variant where after electrophoresis the gel lane is cut into multiple slices

HS:

Hormones and signaling

LC-:

Liquid chromatography

MALDI-:

Matrix-assisted laser-desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem MS

MudPIT:

Multi-dimensional protein identification technology

MT:

Membrane transport

NA:

Nucleic acid metabolism

PF:

Protein folding

PMF:

Peptide mass fingerprint

PS:

Protein synthesis

PT:

Protein targeting

PTM:

Posttranslational modifications

PUF:

Proteins of unknown function

SDS–PAGE:

Sodium dodecyl-sulfate polyacrylamide gel electrophoresis

SR:

Stress response

SSP:

Seed storage protein

TOF:

Time of flight

TOF/TOF:

In tandem MS, the first mass analyzer determines the TOF for the precursor (parent) ions then selected ions are diverted to a collision cell fragmented, and the second TOF mass analyzer determines masses of the fragmented ions

References

  • Agrawal GK, Thelen JJ (2009) A high-resolution two dimensional Gel- and Pro-Q DPS-based proteomics workflow for phosphoprotein identification and quantitative profiling. Meth Mol Biol 527:3–19

    CAS  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    CAS  PubMed  Google Scholar 

  • Ahn NG, Shabb JB, Old WM, Resing KA (2007) Achieving in-depth proteomics profiling by mass spectrometry. ACS Chem Biol 2:39–52

    CAS  PubMed  Google Scholar 

  • Ahsan N, Komatsu S (2010) Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ specific functional differentiation of proteins in soybean. Proteomics 9:4889–4907

    Google Scholar 

  • Alkhalfioui F, Renard M, Vensel WH, Wong J, Tanaka CK, Hurkman WJ, Buchanan BB, Montrichard F (2007) Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiol 44:1559–1579

    Google Scholar 

  • Bai S, Willard B, Chapin LJ, Kinter MT, Francis DM, Stead AD, Jones ML (2010) Proteomic analysis of pollination-induced corolla senescence in petunia. J Exp Bot 61:1089–1109

    Google Scholar 

  • Balmer Y, Vensel WH, DuPont FM, Buchanan BB, Hurkman WJ (2006) Proteome of amyloplasts isolated from developing wheat endosperm presents evidence of broad metabolic activity. J Exp Bot 57:1591–1602

    CAS  PubMed  Google Scholar 

  • Bar-Akiva A, Ovadia R, Rogachev I, Bar-Or C, Bar E, Freiman Z, Nissim-Levi A, Gollop N, Lewinsohn E, Aharoni A, Weiss D, Koltai H, Oren-Shamir M (2010) Metabolic networking in Brunfelsia calycina petals after flower opening. J Exp Bot 61:1393–1403

    CAS  PubMed  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W, Van Staveren M, Stiekema W et al (1998) Analysis of 19 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    CAS  PubMed  Google Scholar 

  • Borges F, Gomes G, Gardner R, Moreno N, McCormick S, Feijó JA, Becker JD (2008) Comparative transcriptomics of Arabidopsis sperm cells. Plant Physiol 148:1168–1181

    CAS  PubMed  Google Scholar 

  • Bourgeois M, Jacquin F, Savois V, Sommerer N, Labas V, Henry C, Burstin J (2009) Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9:254–271

    CAS  PubMed  Google Scholar 

  • Bove J, Jullien M, Grappin P (2003) Functional genomics in the study of seed germination. Genome Biol 3:reviews1002.1–reviews1002.5

    Google Scholar 

  • Campos FAP, Nogueira FCS, Cardoso FC, Costa GCL, Del Bem LEV, Domont GB, Da Silva MJ, Moreira RC, Soares AA, Jucá TL (2010) Proteome analysis of castor bean seeds. Pure Appl Chem 82:259–267

    CAS  Google Scholar 

  • Chandler JW (2008) Cotyledon organogenesis. J Exp Bot 59:2917–2931

    CAS  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    CAS  PubMed  Google Scholar 

  • Chua L, Shan X, Wang J, Peng W, Zhang G, Xie D (2010) Proteomics study of COI1-regulated proteins in Arabidopsis flower. J Integr Plant Biol 52:410–419

    CAS  PubMed  Google Scholar 

  • Dafny-Yelin M, Guterman I, Menda N, Ovadis M, Shalit M, Pichersky E, Zamir D, Lewinsohn E, Adam Z, Weiss D, Vainstein A (2005) Flower proteome: changes in protein spectrum during the advanced stages of rose petal development. Planta 222:37–46

    CAS  PubMed  Google Scholar 

  • Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    CAS  PubMed  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007a) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    CAS  PubMed  Google Scholar 

  • Dai S, Wang T, Yan X, Chen S (2007b) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563

    CAS  PubMed  Google Scholar 

  • Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thøgersen IB, Enghild JJ, Stougaard J (2009) The proteome of seed development in the model legume Lotus japonicus. Plant Physiol 149:1325–1340

    CAS  PubMed  Google Scholar 

  • Dumas C, Rogowsky P (2008) Fertilization and early seed formation. C R Biol 331:715–725

    PubMed  Google Scholar 

  • Fang X, Turner NC, Yan G, Li F, Siddique KH (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. J Exp Bot 61:335–345

    CAS  PubMed  Google Scholar 

  • Farley AR, Link AJ (2009) Identification and quantification of protein posttranslational modifications. Meth Enzymol 463:725–763

    CAS  PubMed  Google Scholar 

  • Feng J, Chen X, Yuan Z, He T, Zhang L, Wu Y, Liu W, Liang Q (2006) Proteome comparison following self- and across-pollination in self-incompatible apricot (Prunus armeniaca L.). Protein J 25:328–335

    CAS  PubMed  Google Scholar 

  • Feng B, Li L, Zhou X, Stanley B, Ma H (2009a) Analysis of the Arabidopsis floral proteome: detection of over 2,000 proteins and evidence for posttranslational modifications. J Integr Plant Biol 51:207–223

    CAS  PubMed  Google Scholar 

  • Feng JR, Chen XS, Yuan ZH, Zhang LJ, Ci J, Liu XL, Zhang CY (2009b) Primary molecular features of self-incompatible and self-compatible F1 seedling from apricot (Prunus armeniaca L.) Katy 9 Xinshiji. Mol Biol Rep 36:263–272

    CAS  PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    CAS  PubMed  Google Scholar 

  • Finnie C, Svensson B (2009) Barley seed proteomics from spots to structures. J Proteomics 72:315–324

    CAS  PubMed  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    CAS  PubMed  Google Scholar 

  • Friedman DB, Hoving S, Westermeier R (2009) Isoelectric focusing and two-dimensional gel electrophoresis. Meth Enzymol 463:515–540

    CAS  PubMed  Google Scholar 

  • Fu Q, Wang BC, Jin X, Li HB, Han P, Wei KH, Zhang XM, Zhu YX (2005) Proteomic analysis and extensive protein identification from dry, germinating Arabidopsis seeds and young seedlings. J Biochem Mol Biol 38:650–660

    CAS  PubMed  Google Scholar 

  • Gache V, Waridel P, Winter C, Juhem A, Schroeder M, Shevchenko A, Popov AV (2010) Xenopus meiotic microtubule-associated interactome. PLoS One 5:e9248

    PubMed  Google Scholar 

  • Gallagher S, Chakavarti D (2008) Staining proteins in gels. J Vis Exp pii:760

    Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    CAS  PubMed  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Küster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    CAS  PubMed  Google Scholar 

  • Gallardo K, Thompson R, Burstin J (2008) Reserve accumulation in legume seeds. C R Biol 331:755–762

    CAS  PubMed  Google Scholar 

  • Germain H, Rudd S, Zotti C, Caron S, O’Brien M, Chantha SC, Lagacé M, Major F, Matton DP (2005) A 6374 unigene set corresponding to low abundance transcripts expressed following fertilization in Solanum chacoense Bitt, and characterization of 30 receptor-like kinases. Plant Mol Biol 59:515–532

    CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    CAS  PubMed  Google Scholar 

  • Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol 10:10–25

    Google Scholar 

  • Hägglund P, Bunkenborg J, Maeda K, Svensson B (2008) Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J Proteome Res 7:5270–5276

    PubMed  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    CAS  PubMed  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    CAS  PubMed  Google Scholar 

  • Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ (2010) Systems analysis of seed filling in Arabidopsis thaliana: Using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 152:2078–2087

    CAS  PubMed  Google Scholar 

  • Heeren RM, Smith DF, Stauber J, Kükrer-Kaletas B, MacAleese L (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20:1006–1014

    CAS  PubMed  Google Scholar 

  • Hills MJ (2004) Control of storage-product synthesis in seeds. Curr Opin Plant Biol 7:302–308

    CAS  PubMed  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317

    CAS  PubMed  Google Scholar 

  • Hochholdinger F, Sauer M, Dembinsky D, Hoecker N, Muthreich N, Saleem M, Liu Y (2006) Proteomic dissection of plant development. Proteomics 6:4076–4083

    CAS  PubMed  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    CAS  PubMed  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    CAS  PubMed  Google Scholar 

  • Hoshino Y, Murata N, Shinoda K (2006) Isolation of individual egg cells and zygotes in alstroemeria followed by manual selection with a microcapillary-connected micropump. Ann Bot 97:1139–1144

    PubMed  Google Scholar 

  • Houston NL, Hajduch M, Thelen JJ (2009) Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol 151:857–868

    CAS  PubMed  Google Scholar 

  • Huang XY, Guo XJ, Shen J, Wang YF, Chen L, Xie J, Wang NL, Wang FQ, Zhao C, Huo R, Lin M, Wang X, Zhou ZM, Sha JH (2008) Construction of a proteome profile and functional analysis of the proteins involved in the initiation of mouse spermatogenesis. J Proteome Res 7:3435–3446

    CAS  PubMed  Google Scholar 

  • Huang S, Taylor NL, Narsai R, Eubel H, Whelan J, Millar AH (2009) Experimental analysis of the rice mitochondrial proteome, its biogenesis, and heterogeneity. Plant Physiol 149:719–734

    CAS  PubMed  Google Scholar 

  • Huang Y, Houston NL, Tovar-Mendez A, Stevenson SE, Miernyk JA, Randall DD, Thelen JJ (2010) A quantitative mass spectrometry-based approach for identifying protein kinase-clients and quantifying kinase activity. Anal Biochem 402:69–76

    CAS  PubMed  Google Scholar 

  • Hynek R, Svensson B, Jensen ON, Barkholt V, Finnie C (2009) The plasma membrane proteome of germinating barley embryos. Proteomics 9:3787–3794

    CAS  PubMed  Google Scholar 

  • Insenser MR, Hernáez ML, Nombela C, Molina M, Molero G, Gil C (2010) Gel and gel-free proteomics to identify Saccharomyces cerevisiae cell surface proteins. J Proteomics 73:1183–1195

    CAS  PubMed  Google Scholar 

  • Jain R, Katavic V, Agrawal GK, Guzov VM, Thelen JJ (2008) Purification and proteomic characterization of plastids from Brassica napus developing embryos. Proteomics 8:3397–3405

    CAS  PubMed  Google Scholar 

  • Karr TL (2007) Fruit flies and the sperm proteome. Hum Mol Genet 16:R124–R133

    CAS  PubMed  Google Scholar 

  • Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophytes development rice anthers. Proteomics 3:738–751

    CAS  PubMed  Google Scholar 

  • Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY (2009) Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. J Proteome Res 8:3598–3605

    CAS  PubMed  Google Scholar 

  • Krishnan HB, Oehrle NW, Natarajan SS (2009) A rapid and simple procedure for the depletion of abundant storage proteins from legume seeds to advance proteome analysis: a case study using Glycine max. Proteomics 9:3174–3188

    CAS  PubMed  Google Scholar 

  • Larre C, Penninck S, Bouchet B, Lollier V, Tranquet O, Denery-Papini S, Guillon F, Rogniaux H (2010) Brachypodium distachyon grain: identification and subcellular localization of storage proteins. J Exp Bot 61:1771–1783

    CAS  PubMed  Google Scholar 

  • Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB (2007) Using genomics to study legume seed development. Plant Physiol 144:562–574

    CAS  PubMed  Google Scholar 

  • Lee CP, Eubel H, O’Toole N, Millar AH (2008) Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism. Mol Cell Proteomics 7:1297–1316

    CAS  PubMed  Google Scholar 

  • Li G, Nallamilli BRR, Tan F, Peng Z (2008) Removal of high-abundance proteins for nuclear subproteome studies in rice (Oryza sativa) endosperm. Electrophoresis 29:604–617

    CAS  PubMed  Google Scholar 

  • Liu H, Liu Y-z, Zheng S-q, Jiang J-m, Wang P, Chen W (2010) Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion. Planta 231:847–860

    CAS  PubMed  Google Scholar 

  • Lundgren DH, Hwang SI, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53

    CAS  PubMed  Google Scholar 

  • MacAleese L, Stauber J, Heeren RM (2009) Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics 9:819–834

    CAS  PubMed  Google Scholar 

  • Mak Y, Skylas DJ, Willows R, Connolly A, Cordwell SJ, Wrigley CW, Sharp PJ, Copeland L (2006) A proteomic approach to the identification and characterisation of protein composition in wheat germ. Funct Integr Genomics 6:322–337

    CAS  PubMed  Google Scholar 

  • Maltman DJ, Gadd SM, Simon WJ, Slabas AR (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7:1513–1528

    CAS  PubMed  Google Scholar 

  • Méchin V, Balliau T, Chateau-Joubert S, Davanture M, Langella O, Négroni L, Prioul JL, Thévenot C, Zivy M, Damerval C (2004) A two-dimensional proteome map of maize endosperm. Phytochemistry 65:1609–1618

    PubMed  Google Scholar 

  • Miernyk JA, Johnston ML (2006) Chemical cross-linking immobilized-concanavalin a for use in proteomic analyses. Prep Biochem Biotech 36:203–213

    CAS  Google Scholar 

  • Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis Suppl 1:S156–S161

    Google Scholar 

  • Mohapatra SS, Lockey RF, Polo F (2008) Weed pollen allergens. Clin Allergy Immunol 21:127–139

    Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    PubMed  Google Scholar 

  • Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G (2010) Proteomics reveal tissue-specific features of the cress (Lepidium sativum L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 10:406–416

    PubMed  Google Scholar 

  • Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140

    CAS  PubMed  Google Scholar 

  • Nie L, Wu G, Zhang W (2008) Statistical application and challenges in global gel-free proteomic analysis by mass spectrometry. Crit Rev Biotechnol 28:297–307

    CAS  PubMed  Google Scholar 

  • Noir S, Brautigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    CAS  PubMed  Google Scholar 

  • Okamoto T, Higuchi K, Shinkawa T, Isobe T, Lorz H, Koshiba T, Kranz E (2004) Identification of major proteins in maize egg cells. Plant Cell Physiol 45:1406–1412

    CAS  PubMed  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769

    CAS  PubMed  Google Scholar 

  • Ostergaard O, Finnie C, Laugesen S, Roepstorff P, Svennson B (2004) Proteome analysis of barley seeds: identification of major proteins from two-dimensional gels (pI 4–7). Proteomics 4:2437–2447

    CAS  PubMed  Google Scholar 

  • Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58:902–920

    CAS  PubMed  Google Scholar 

  • Parkinson J, Blaxter M (2009) Expressed sequence tags: an overview. Meth Mol Biol 533:1–12

    CAS  Google Scholar 

  • Pawłowski TA (2007) Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    PubMed  Google Scholar 

  • Pawłowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48

    PubMed  Google Scholar 

  • Pawłowski TA (2010) Proteomic approach to analyze dormancy breaking of tree seeds. Plant Mol Biol 73:15–25

    PubMed  Google Scholar 

  • Perata P, Matsukura C, Vernieri P, Yamaguchi J (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:2197–2208

    CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    CAS  PubMed  Google Scholar 

  • Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152

    CAS  PubMed  Google Scholar 

  • Piffanelli P, Ross JHE, Murphy DJ (2003) Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Plant Journal 11:549–562

    Google Scholar 

  • Pink M, Verma N, Rettenmeier AW, Schmitz-Spanke S (2010) CBB staining protocol with higher sensitivity and mass spectrometric compatibility. Electrophoresis 31:593–598

    CAS  PubMed  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    CAS  PubMed  Google Scholar 

  • Puc M (2003) Characterisation of pollen allergens. Ann Agric Environ Med 10:143–149

    PubMed  Google Scholar 

  • Raharjo TJ, Widjaja I, Roytrakul S, Verpoorte R (2004) Comparative proteomics of Cannabis sativa plant tissues. J Biomol Tech 15:97–106

    PubMed  Google Scholar 

  • Rezaul K, Wu L, Mayya V, Hwang SI, Han D (2005) A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol Cell Proteomics 4:169–181

    CAS  PubMed  Google Scholar 

  • Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR (2008) 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 313:630–647

    CAS  PubMed  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26

    CAS  PubMed  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol [Epub ahead of print]

  • Scippa GS, Rocco M, Ialicicco M, Trupiano D, Viscosi V, Di Michele M, Arena S, Chiatante D, Scaloni A (2010) The proteome of lentil (Lens culinaris Medik.) seeds: discriminating between landraces. Electrophoresis 31:497–506

    CAS  PubMed  Google Scholar 

  • Sefton BM, Shenolikar S (2001) Overview of protein phosphorylation. Curr Protoc Protein Sci 13:Unit13.1

    Google Scholar 

  • Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV (2009) Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 9:2543–2554

    CAS  PubMed  Google Scholar 

  • Sharon M (2010) How far can we go with structural mass spectrometry of protein complexes? J Am Soc Mass Spec 21:487–500

    CAS  Google Scholar 

  • Sheoran IS, Olson DJ, Ross AR, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5:3752–3764

    CAS  PubMed  Google Scholar 

  • Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sexual Plant Reprod 19:185–196

    CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2007) Proteomic analysis of tomato (Lyropersicon esculentum) pollen. J Exp Bot 58:3525–3535

    CAS  PubMed  Google Scholar 

  • Sheoran IS, Pedersen EJ, Ross AR, Sawhney VK (2009a) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793

    CAS  PubMed  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009b) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176:99–104

    CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    CAS  PubMed  Google Scholar 

  • Sirover MA (1997) Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem 66:133–140

    CAS  PubMed  Google Scholar 

  • Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nature Meth 4:817–821

    CAS  Google Scholar 

  • Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, Wiel IM, Wisztorski M, Fournier I, Heeren RM (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21:338–347

    CAS  PubMed  Google Scholar 

  • Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T (2003) Efficient and specific removal of albumin from human serum samples. Mol Cell Proteomics 2:262–270

    CAS  PubMed  Google Scholar 

  • Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ (2009) Validation of gel-free, label-free quantitative proteomics approaches: applications for seed allergen profiling. J Proteomics 72:555–566

    CAS  PubMed  Google Scholar 

  • Suzuki G (2009) Recent progress in plant reproduction research: the story of the male gametophyte through to successful fertilization. Plant Cell Physiol 50:1857–1864

    CAS  PubMed  Google Scholar 

  • Takanashi H, Ohnishi T, Mogi M, Okamoto T, Arimura S, Tsutsumi N (2010) Studies of mitochondrial morphology and DNA amount in the rice egg cell. Curr Genet 56:33–41

    CAS  PubMed  Google Scholar 

  • Talukdar T, Gorecka KM, de Carvalho-Niebel F, Downie JA, Cullimore J, Pikula S (2009) Annexins—calcium- and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochim Pol 56:199–210

    Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    CAS  PubMed  Google Scholar 

  • Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346

    CAS  PubMed  Google Scholar 

  • Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029

    CAS  PubMed  Google Scholar 

  • Uchiumi T, Shinkawa T, Isobe T, Okamoto T (2007) Identification of the major protein components of rice egg cells. J Plant Res 120:575–579

    CAS  PubMed  Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42:963–977

    PubMed  Google Scholar 

  • van Wijk KJ, Peltier JB, Giacomelli L (2007) Isolation of chloroplast proteins from Arabidopsis thaliana for proteome analysis. Methods Mol Biol 355:43–48

    PubMed  Google Scholar 

  • Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    CAS  PubMed  Google Scholar 

  • Vyetrogon K, Tebbji F, Olson DJH, Ross ARS, Matton DP (2007) A comparative and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible species Solanum chaconse Bitt. Proteomics 7:232–247

    CAS  PubMed  Google Scholar 

  • Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J (2008) Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 8:4808–4821

    CAS  PubMed  Google Scholar 

  • Wang X, Xu C, Wu R, Larkins BA (2009) Genetic dissection of complex endosperm traits. Trends Plant Sci 14:391–398

    CAS  PubMed  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    PubMed  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    CAS  PubMed  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    CAS  PubMed  Google Scholar 

  • Woo SH, Fukuda M, Islam N, Takaoka M, Kawasaki H, Hirano H (2002) Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis. Electrophoresis 23:647–654

    CAS  PubMed  Google Scholar 

  • Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925

    CAS  PubMed  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    CAS  PubMed  Google Scholar 

  • Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J Proteome Res 8:1441–1451

    CAS  PubMed  Google Scholar 

  • Yano H, Kuroda M (2006) Disulfide proteome yields a detailed understanding of redox regulations: a model study of thioredoxin-linked reactions in seed germination. Proteomics 6:294–300

    CAS  PubMed  Google Scholar 

  • Yates JR III, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    CAS  PubMed  Google Scholar 

  • Yates JR III, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    CAS  PubMed  Google Scholar 

  • Zhu H, Bi YD, Yu LJ, Guo DD, Wang BC (2008) Comparative proteomic analysis of apomictic monosomic addition line of Beta corolliflora and Beta vulgaris L. in sugar beet apomixes. Mol Biol Rep 36:2093–2098

    PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by Seventh Framework Program of the European Union—International Reintegration Grant (MIRG-CT-2007-200165), COST Action FAO903, Bilateral project CSIC-SAS (2007 SK 0001), Project APVV-0115-07, VEGA 2/0005/08 (Study of the cell events in course of embryo formation in situ and in vitro conditions in Arabidopsis and maize) and is a joint publication within the action COST FA 0903, “Harnessing of Plant Reproduction for Crop improvement,” a bilateral Spanish-Slovak cooperation (2007–2009) and the Spanish MEC Project (BFU2006-09876/BFI). Support for JAM was in part from the National Scholarship Program of the Slovak Republic, administered by the Slovak Academic Information Agency. The authors thank B.A. McClure, J.J. Thelen, and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hajduch.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miernyk, J.A., Preťová, A., Olmedilla, A. et al. Using proteomics to study sexual reproduction in angiosperms. Sex Plant Reprod 24, 9–22 (2011). https://doi.org/10.1007/s00497-010-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-010-0149-5

Keywords

Navigation