Skip to main content
Log in

Maize host requirements for Ustilago maydis tumor induction

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

The biotrophic pathogen Ustilago maydis causes tumors by redirecting vegetative and floral development in maize (Zea mays L.). After fungal injection into immature tassels, tumors were found in all floral organs, with a progression of organ susceptibility that mirrors the sequential location of foci of cell division in developing spikelets. There is sharp demarcation between tumor-forming zones and areas with normal spikelet maturation and pollen shed; within and immediately adjacent to the tumor zone, developing anthers often emerge precociously and exhibit a range of developmental defects suggesting that U. maydis signals and host responses are restricted spatially. Male-sterile maize mutants with defects in anther cell division patterns and cell fate acquisition prior to meiosis formed normal adult leaf tumors, but failed to form anther tumors. Methyl jasmonate and brassinosteroid phenocopied these early-acting anther developmental mutants by generating sterile zones within tassels that never formed tumors. Although auxin, cytokinin, abscisic acid and gibberellin did not impede tassel development, the Dwarf8 mutant defective in gibberellin signaling lacked tassel tumors; the anther ear1 mutant reduced in gibberellin content formed normal tumors; and Knotted1, in which there is excessive growth of leaf tissue, formed much larger vegetative and tassel tumors. We propose the hypothesis that host growth potential and tissue identity modulate the ability of U. maydis to redirect differentiation and induce tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abou-Zeid AM (1995) Effect of Ustilago maydis (DC) Corda and its toxin on some maize cultivars. J Phytopathol (Berlin) 143:577–580

    Article  CAS  Google Scholar 

  • Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    Article  PubMed  CAS  Google Scholar 

  • Albertsen MC, Fox T, Huffman G, Trimnell M (2009) Nucleotide sequences mediating male fertility and method of using same. Patent number US 7,517,975 B2

  • Banuett F (2002) Pathogenic development in Ustilago maydis. In: Osiewacz HD (ed) Molecular biology of fungal development. Marcel Dekker, New York, pp 349–398

    Google Scholar 

  • Banuett F, Herskowitz I (1994) Identification of fuz7, an Ustilago maydis MEK/MAPKK homolog required for A locus-dependent and A locus-independent steps in the fungal life cycle. Genes Dev 8:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965–2976

    PubMed  CAS  Google Scholar 

  • Barazesh S, McSteen P (2008) Hormonal control of grass inflorescence development. Trends Plant Sci 13:656–662

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize an1 gene. Plant Cell 7:75–84

    Article  PubMed  CAS  Google Scholar 

  • Bommert P, Satoh-Nagasawa N, Jackson D, Hirano H (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46:69–78

    Article  PubMed  CAS  Google Scholar 

  • Callow JA (1975) Endopolyploidy in maize smut neoplasms induced by maize smut fungus, Ustilago maydis. New Phytol 75:253–257

    Article  Google Scholar 

  • Callow JA, Ling IT (1973) Histology of neoplasms and lesions in maize seedlings following the infection of sporidia of Ustilago maydis (DC) Corda. Physiol Plant Path 3:489–494

    Article  Google Scholar 

  • Chaubal R, Anderson JR, Trimnell MR, Fox TW, Albertsen MC, Bedinger P (2003) The transformation of anthers in the msca1 mutant of maize. Planta 216:778–788

    PubMed  CAS  Google Scholar 

  • Cheng P-C, Pareddy DR (1994) Morphology and development of the tassel and ear. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 37–47

    Google Scholar 

  • Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147:2054–2069

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KFK, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194

    Article  PubMed  CAS  Google Scholar 

  • Kämper J, Kahmann R, Bölker M et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    Article  PubMed  CAS  Google Scholar 

  • Krüger J, Loubradou G, Wanner G, Regenfelder E, Feldbrügge M, Kahmann R (2000) Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol Plant Microbe Interact 13:1034–1040

    Article  PubMed  Google Scholar 

  • León-Ramírez CG, Cabrera-Ponce JL, Martínez-Espinoza AD, Herrera-Estrella L, Méndez L, Reynaga-Peña CG, Ruiz-Herrera J (2004) Infection of alternative host plant species by Ustilago maydis. New Phytol 164:337–346

    Article  Google Scholar 

  • Ma J, Duncan D, Morrow DJ, Fernandes J, Walbot V (2007) Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. Plant J 50:637–648

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Skibbe DS, Fernandes JF, Walbot V (2008) Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biology 9:R181

    Article  PubMed  CAS  Google Scholar 

  • Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862

    Article  PubMed  CAS  Google Scholar 

  • Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45:S63–70

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nature Chem Biol 5:308–316

    Article  CAS  Google Scholar 

  • Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Path 9:339–355

    Article  CAS  Google Scholar 

  • Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933–941

    PubMed  CAS  Google Scholar 

  • Smith LG, Greene BA, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are due to Flora Banuett for traveling to Stanford with the FB1 and FB2 strains and demonstrating fungal injection. Allison Stegner assisted with the hormone experiments and sketched the interpretative drawings. Regine Kahmann provided additional strains and useful advice on tumor formation. Gunther Doehlemann commented on a draft of the manuscript. DSS was supported by a National Institute of Health Ruth L. Kirschstein National Research Service post-doctoral award (1 F32 GM076968-01). Research was supported in part by a National Science Foundation award to VW (IOS-0852788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Walbot.

Additional information

Communicated by Sheila McCormick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walbot, V., Skibbe, D.S. Maize host requirements for Ustilago maydis tumor induction. Sex Plant Reprod 23, 1–13 (2010). https://doi.org/10.1007/s00497-009-0109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0109-0

Keywords

Navigation