Skip to main content
Log in

In vitro culture promotes partial autonomous endosperm development in unfertilized ovules of wild-type Arabidopsis thaliana var. Columbia

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Partial endosperm development without paternal genome involvement was induced in unpollinated ovaries of wild-type Arabidopsis thaliana cultured in vitro. Unpollinated pistils were cultured on hormone-free Murashige and Skoog (MS) medium with addition of 6% sucrose and supplemented with: benzylaminopurine (BAP; 2 mg l−1) combined with naphthylacetic acid (NAA; 0.1 mg l−1), 2,4-dichlorophenoxyacetic acid (2,4-D; explants exposed to 1-h auxin shock 20 or 40 mg l−1, and transferred to hormone-free MS medium). Initiation of autonomous endosperm (AE) development was induced on all media used in 54 ovules from 39 cultured ovaries (26%), with an average frequency of 1.4 ovules/ovary. The highest frequency of partial endosperm formation occurred on media combining the two growth regulators BAP and NAA (59% of ovaries had ovules with AE), although endosperm development was also induced on hormone-free medium (in 20.5% of ovaries). The number of AE nuclei ranged from 2 to ~50, depending on the day of culture and medium; neither cellularization nor differentiation on specific regions typical for endosperm of wild-type Arabidopsis, were noted. Fertilization independent endosperm most probably originated from the secondary nucleus, but involvement of the polar nuclei could not be excluded, as indicated by nuclear size and structure. In vitro conditions did not influence egg cell proliferation. Gynogenic embryos were observed neither in the ovules with autonomous endosperm nuclei nor in ovules without endosperm induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berger F (2004) Imprinting-a green variation. Science 303:483–485

    CAS  PubMed  Google Scholar 

  • Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas C, Haseloff J, Berger F (2001) Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show the syncytial endosperm is divided in mitotic domains. Plant Cell 13:495–509

    CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE, Nguyen H (2003) Comparative anatomy of the chalazal endosperm cyst in seeds of the Brassicaceae. Bot J Linn Soc 144:375–394

    Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    CAS  PubMed  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Google Scholar 

  • Collinge MA, Spillane C, Köhler C, Gheyselinck J, Grossniklaus U (2004) Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development. Plant Cell 16:1035–1046

    CAS  PubMed  Google Scholar 

  • Grossniklaus U (2001) From sexuality to apomixis: molecular and genetic approaches. In: Savidan Y, Carman JG, Dresselhaus T (eds) Flowering of Apomixis: From Mechanisms to Genetic Engineering. CIMMYT, IRD & EU’s RTD FAIR program, pp 168–211

  • Grossniklaus U, Vielle-Calzada JP, Hoepner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA a polycomb group gene in Arabidopsis. Science 280:446–450

    CAS  PubMed  Google Scholar 

  • Guitton A-E, Page DR, Chambrier P, Lionnet C, Faure J-E, Grossniklaus U, Berger F (2004) Identification of new members of Fertilization Independent Seed Polycomb Group pathway involved in the control of seed development. Development 131:2971–2981

    CAS  PubMed  Google Scholar 

  • Herr JM, Jr (1999) Endosperm development in Arabidopsis thaliana (L.) Heynh. Acta Biol Cracov Ser Bot 41:103–109

    Google Scholar 

  • Huang QF, Yang HY, Zhou C (1982) Embryological observations on ovary culture of unpollinated young flowers in Hordeum vulgare L. (in Chinese). Acta Bot Sin 24:299–300

    Google Scholar 

  • Jensen WA, Schultz P, Ashton ME (1977) An ultrastructural study of early endosperm development and synergid changes in unfertilized cotton ovules. Planta 133:179–189

    Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    CAS  PubMed  Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinney M, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm by the MEDEA polycomb gene in Arabidopsis. Plant Biol 96:4186–4191

    CAS  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Ann Rev Plant Biol 54:547–574

    CAS  Google Scholar 

  • Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    PubMed  Google Scholar 

  • Kranz E, von Wiegen P, Lörz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8:9–23

    Google Scholar 

  • Kranz E, von Wiegen P, Quader H, Lörz H (1998) Endosperm development after fusion of isolated, single maize sperm and central cells In vitro. Plant Cell 10:511–524

    CAS  PubMed  Google Scholar 

  • Liu CM, Meinke DW (1998) The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. Plant J 16:21–31

    CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301

    CAS  PubMed  Google Scholar 

  • Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (2000) Expression and parent-of-origin effects for FIS2, MEDEA and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642

    CAS  PubMed  Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1990) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Google Scholar 

  • Mól R (1993) Embryo sac development during the culture of placenta attached ovules of Melandrium album. Biol Plant 35:25–30

    Google Scholar 

  • Mól R, Betka A, Wojciechowicz M (1995) Induction of autonomous endosperm in Lupinus luteus, Helleborus niger and Melandrium album by in vitro culture of unpollinated ovaries. Sex Plant Reprod 8:273–277

    Google Scholar 

  • Mosquna A, Katz A, Shochat S, Grafi G, Ohad N (2004) Interaction of FIE, a Polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol Genet Genom271:651–657

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Ohad N, Margossian L, Hsu Y-C, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 93:5319–5324

    CAS  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutation in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–416

    CAS  PubMed  Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335

    Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    CAS  Google Scholar 

  • Rojek J, Kuta E, Przywara L (2002) Autonomous endosperm development in unpollinated ovaries of Brassica napus L. cv. Topas cultured in vitro. Acta Biol Cracov Ser Bot 44:195–202

    Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of origin effect on seed development of Arabidopsis thaliana. Development 125:3329–3341

    CAS  PubMed  Google Scholar 

  • Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jürgens G, Somerville C, Lepiniec L, Berger F (2002) Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567–5576

    PubMed  Google Scholar 

  • Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Phil Trans Royal Soc London Ser B-Biol Sci 358:1095–1103

    CAS  Google Scholar 

  • Spillane C, MacDougall C, Stock C, Köhler C, Vielle-Calzada JP, Nunes MS, Grossniklaus U, Goodrich J (2000) Interaction of the Arabidopsis Polycomb group proteins FIE and MEA mediates their common phenotypes. Curr Biol 10:1535–1538

    CAS  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Vinkenoog RL, Scott RJ (2001) Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex Plant Reprod 14:189–194

    Google Scholar 

  • Vinkenoog R, Spielman M, Adams S, Fischer RL, Dickinson HG, Scott RJ (2000) Hypomethylation promotes autonomous endosperm development and rescues postfertilization lethality in fie mutants. Plant Cell 12:2271–2282

    CAS  PubMed  Google Scholar 

  • Wei J, Sun M-X (2002) Embryo sac isolation in Arabidopsis thaliana: a simple and efficient technique for structure analysis and mutant selection. Plant Mol Biol Rep 20:141–148

    Google Scholar 

  • Wijowska M, Kuta E (2000) Embryological analysis of unpollinated ovaries of Viola L. cultured in vitro. Acta Biol Cracov Ser Bot 42(suppl 1):31

    Google Scholar 

  • Wijowska M, Kuta E, Przywara L (1999a) In vitro culture of unpollinated ovules of Viola odorata L. Acta Biol Cracov Ser Bot 41:95–101

    Google Scholar 

  • Wijowska M, Kuta E, Przywara L (1999b) Autonomus endosperm induction by in vitro culture of unfertilized ovules of Viola odorata L. Sex Plant Reprod 12:164–170

    Google Scholar 

  • Yadegari R, Kinoshita T, Lotan O, Cohen G, Katz A, Choi Y, Nakashima K, Harada JJ, Goldberg RB, Fischer RL, Ohad N (2000) Mutation in the FIE and MEA genes that encode interacting Polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 12:2367–2381

    CAS  PubMed  Google Scholar 

  • Zhou C, Yang H (1981) Induction of haploid rice plantlets by ovary culture. Plant Sci Lett 20:231–237

    Google Scholar 

Download references

Acknowledgements

We thank the kind generosity of Professor Jolanta Małuszyńska from the Department of Plant Anatomy and Cytology of Silesian University in Katowice for providing experimental seeds and Prof. Halina Gabryś from the Department of Plant Biochemistry and Physiology of the Jagiellonian University in Cracow for control plants. Special thanks are due for Professor John Herr Jr. from the University of South Carolina in Columbia for his kind help in the ovule clearing technique and for his invaluable comments in preparing the manuscript. We also thank Professor Val Raghavan from the Ohio State University in Columbus for stimulating discussion regarding interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Rojek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojek, J., Kuta, E. & Bohdanowicz, J. In vitro culture promotes partial autonomous endosperm development in unfertilized ovules of wild-type Arabidopsis thaliana var. Columbia. Sex Plant Reprod 18, 29–36 (2005). https://doi.org/10.1007/s00497-005-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-005-0246-z

Keywords

Navigation