Skip to main content

Advertisement

Log in

Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Self-compatibility in a naturally self-incompatible species like sweet cherry is a highly interesting trait for breeding purposes and a powerful tool with which to investigate the basis of the self-incompatible reaction in gametophytic systems. However, natural self-compatibility in sweet cherry is a very rare phenomenon. Cristobalina is a local Spanish sweet cherry cultivar that has proven to be spontaneously self-compatible. In this work, the nature of the self-compatibility in Cristobalina has been studied using genetic and molecular approaches. Pollination studies and microscopic observations of pollen tube growth were carried out to confirm the self-compatible character and the results obtained indicate that self-compatibility is caused by a failure of the pollen and not the style factor. Polymerase chain reaction (PCR) analysis of progenies derived from Cristobalina revealed that self-compatibility in this genotype is not related uniquely to one of the two pollen S alleles, but that pollen grains carrying either of the two haplotypes can overcome the incompatibility barrier. Moreover, PCR analysis and microscopic observation of pollen tube growth in progeny derived from Cristobalina also confirmed that the self-compatible descendants can carry either of the two S haplotypes of their progenitor. Isolation and sequencing of the style S-RNases and pollen SFBs revealed that the DNA sequences of these factors are the same as those described in other self-incompatible sweet cherry cultivars with the same S alleles. Possible mechanisms to explain self-compatibility in Cristobalina are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson MA, Cornish EC, Mau S-L, Williams EG, Hoggart R, Atkinson A, Bonig I, Grego B, Simpson R, Roche P, Haley JD, Penschow J, Niall HD, Tregear GW, Coghlan JP, Crawford RJ, Clarke AE (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44

    CAS  Google Scholar 

  • Brewaker JL, Natarajan AT (1960) Centric fragments and pollen-part mutations of incompatibility alleles in Petunia. Genetics 45:699–704

    Google Scholar 

  • Crane MB, Lawrence WJC (1929) Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J Pomol Hortic Sci 7:276–301

    Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Entani T, Iwano M, Shiba H, Che F-S, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells 8:203–213

    Article  CAS  PubMed  Google Scholar 

  • Free JB (1964) Comparison of the importance of insect and wind pollination on apple trees. Nature 201:726–727

    PubMed  Google Scholar 

  • Golz JF, Clarke AE, Newbigin E (1999) A molecular description of mutations affecting the pollen component of the Nicotiana alata S locus. Genetics 152:1123–1135

    CAS  PubMed  Google Scholar 

  • Herrero J (1964) Cartografía de las variedades frutales de hueso y pepita. CSIC, Aula Dei, Zaragoza

    Google Scholar 

  • Hormaza JI (2002) Molecular characterisation and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328

    Google Scholar 

  • Hormaza JI, Herrero M (1992) Pollen selection. Theor Appl Genet 83:663–672

    Article  Google Scholar 

  • Hormaza JI, Pinney K, Polito VS (1996) Correlation in the tolerance to ozone between sporophytes and male gametophytes of several fruit and nut tree species (Rosaceae). Sex Plant Reprod 9:44–48

    Google Scholar 

  • Hugard J (1978) Origine du pollen et varietes pollinisatrices. Fruit Belge 381:11–32

    Google Scholar 

  • Iezzoni A, Schmidt H, Albertini A (1990) Cherries (Prunus). In: Moore JN, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops, vol 1. ISHS, Wageningen, The Netherlands, pp 111–173

  • Ikeda K, Igic B, Ushijima K, Yamane H, Hauck NR, Nakano R, Sassa H, Iezzoni AF, Kohn JR, Tao R (2004) Primary structural features of the S haplotype-specific F-box protein SFB, in Prunus. Sex Plant Reprod 16:235–243

    Article  CAS  Google Scholar 

  • Jefferies CJ, Belcher AR (1974) A fluorescent brightener used for pollen tube identification in vivo. Stain Technol 49:199–202

    CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kester DE, Micke WC, Viveros M (1994) A mutation in ‘Nonpareil’ almond conferring unilateral incompatibility. J Am Soc Hortic Sci 119:1289–1292

    Google Scholar 

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–42

    Article  CAS  PubMed  Google Scholar 

  • Lapins KO (1975) ‘Compact Stella’ cherry. Fruit Var J 29:20

    Google Scholar 

  • Lewis D (1943) Physiology of incompatibility in plants. III Autopolyploids. J Genet 45:171

    Google Scholar 

  • Lewis D (1947) Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1:85–108

    Google Scholar 

  • Lewis D (1949) Structure of the incompatibility gene. II Induced mutation rate. Heredity 3:339–355

    PubMed  Google Scholar 

  • Lewis D (1961) Chromosome fragments and mutation of the incompatibility gene. Nature 190:990–991

    CAS  Google Scholar 

  • Lewis D, Crowe LK (1954) Structure of the incompatibility gene. IV Types of mutation in Prunus avium L. Heredity 8:357–363

    Google Scholar 

  • Linskens HF, Esser K (1957) Über eine spezifische Anfärbung der Pollenschläuche im Griffel und die Zahl der Kallosepfropfen nach Selbstdung und Fremddung. Naturwissenschaften 44:1–2

    Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957

    Article  CAS  PubMed  Google Scholar 

  • McCubbin AG, Kao T-H (2000) Molecular recognition and response in pollen and pistil interactions. Annu Rev Cell Dev Biol 16:333–364

    Article  CAS  PubMed  Google Scholar 

  • Pandey KK (1965) Centric chromosome fragments and pollen-part mutations of the incompatibility gene in Nicotiana alata. Nature 206:792–795

    Google Scholar 

  • Qiao H, Wang H, Zhao L, Huang J, Zhang Y, Xue Y (2004) The F-box protein AHSLF-S2 physically interacts with S-RNases that may be inhibited by Ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:582–595

    Google Scholar 

  • Royo J, Kinz C, Kowyama Y, Anderson MA, Clarke AE, Newbigin E (1994) Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-incompatibility in Lycopersicon peruvianum. Proc Natl Acad Sci U S A 91:6511–6514

    CAS  PubMed  Google Scholar 

  • Sassa H, Hirano H, Ikeshashi H (1992) Self-incompatibility-related RNases in styles of Japanese pear (Pyrus serotina Rehd.). Plant Cell Physiol 33:811–814

    CAS  Google Scholar 

  • Sassa H, Hirano H, Nishio T, Koba T (1997) Style-specific self-compatible mutation caused by deletion of S-RNase gene in Japanese pear (Pyrus serotina). Plant J 12:223–227

    Article  CAS  Google Scholar 

  • Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, Kao T-h (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld T, Robbins TP, Bošković R, Tobutt KR (2001) Cloning six cherry self-incompatibility alleles and development of allele-specific PCR detection. Theor Appl Genet 102:1046–1055

    Google Scholar 

  • Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233

    CAS  Google Scholar 

  • Tehrani G, Brown S (1992) Pollen-incompatibility and self-fertility in sweet cherry. Plant Breed Rev 9:367–388

    Google Scholar 

  • Thompson RD, Uhrig H, Hermsen JGT, Salamini F, Kaufmann H (1991) Investigation of a self-compatible mutation in Solanum tuberosum clones inhibiting S-allele activity in pollen differentially. Mol Gen Genet 226:283–288

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Ando T, Takahashi K, Kokubun H, Watanabe H, Masada M, Zhu X, Marchesi E, Kao T-H (1999) Breakdown of self-incompatibility in a natural population of Petunia axilaris (Solanaceae) in Uruguay containing both self-compatible and self-incompatible plants. Sex Plant Reprod 12:6–13

    Article  Google Scholar 

  • Tsukamoto T, Ando T, Takahashi K, Omodori T, Watanabe H, Kokubun H, Marchesi E, Kao T-H (2003) Breakdown of self-incompatibility in a natural population of Petunia axilaris caused by loss of pollen function. Plant Physiol 131:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Tamura M, Kusaba M, Tao R, Gradziel TM, Dandekar AM, Hirano H (2001) Characterization of the S-locus region of almond (Prunus dulcis): analysis of a somaclonal mutant and a cosmid contig for S haplotype. Genetics 158:379–386

    CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Skirpan AL, Kao TH (2003) S-RNase-mediated self-incompatibility. J Exp Bot 54:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wünsch A, Hormaza JI (2004a) S-Allele identification in sweet cherry (Prunus avium L.) cultivars by PCR analysis. Plant Breed 123:327–331

    Article  Google Scholar 

  • Wünsch A, Hormaza JI (2004b) Cloning and characterization of genomic DNA sequences of four self-incompatibility alleles in sweet cherry (Prunus avium L.). Theor Appl Genet 108:299–305

    Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003a) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Ikeda K, Hauck NR, Iezzoni AF, Tao R (2003b) Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54:2431–2437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M. Herrero and J. Rodrigo for helpful comments on the manuscript and J. Negueroles for providing some of the plant material used in this study. Financial support for this work was provided by the Spanish Ministry of Science and Technology (MCYT Project grant AGL2001–2414 and AGL2003–05318). A. W. was supported by a SIA-DGA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Hormaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wünsch, A., Hormaza, J.I. Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17, 203–210 (2004). https://doi.org/10.1007/s00497-004-0234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-004-0234-8

Keywords

Navigation