Skip to main content
Log in

Identification of a male-specific AFLP marker in a functionally dioecious fig, Ficus fulva Reinw. ex Bl. (Moraceae)

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

A male-specific amplified fragment length polymorphism (AFLP) marker was identified in the functionally dioecious fig species, Ficus fulva. A total of 89 polymorphic fragments from three primer combinations were produced, of which one (246 bp) was present in all males (n=23) and absent in all females (n=24) of two populations. This strong association suggests a tight chromosomal linkage between the AFLP marker and the sex-controlling locus. Further analysis indicated that the marker segregated in open-pollinated progenies from natural populations in a 1:1 ratio (n=156), implying that males are the heterogametic sex. Chromosome preparations showed no evidence for morphologically distinct sex chromosomes. The low frequencies of associated markers argue against a morphologically cryptic non-recombining sex chromosome. The sex-locus is therefore likely to be autosomal. The male-specific AFLP marker was sequenced and converted into a sequence characterised amplified region (SCAR) marker. This SCAR marker produced a fragment of equal size in males and females, suggesting that sequence divergence between male- and female-specific chromosomal regions is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alstrom-Rapaport C, Lascoux M, Yang YC, Roberts G, Tuskan GA (1998) Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). J Hered 89:44–49

    Article  CAS  Google Scholar 

  • Anstett MC, Hossaert-McKey M, Kjellberg F (1997) Figs and fig pollinators: evolutionary conflicts in a coevolved mutualism. Trends Ecol Evol 12:94–99

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Berg CC (1989) Classification and distribution of Ficus. Experientia 45:605–611

    Google Scholar 

  • Charlesworth D (2001) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  Google Scholar 

  • Compton SG, Ross SJ, Thornton IWB (1994) Pollinator limitation in fig tree reproduction on the island of Anak Krakatau (Indonesia). Biotropica 26:180–186

    Google Scholar 

  • Condit IJ (1928) Cytological and morphological studies in the genus Ficus. I. Chromosome number and morphology in seven species. Univ Calif Publ Bot 11:233–244

    Google Scholar 

  • Condit IJ (1934) Cytological and morphological studies in the genus Ficus. II. Chromosome number and morphology in thirty-one species. Univ Calif Publ Bot 17:61–74

    Google Scholar 

  • Condit IJ (1964) Cytological studies in the genus Ficus III. Chromosome numbers in sixty-two species. Madroño 17:153–154

    Google Scholar 

  • Conn JS, Blum U (1981) Sex ratio of Rumex hastulatus: the effect of environmental factors and certation. Evolution 35:1108–1116

    Google Scholar 

  • Corner EH (1965) Check-list of Ficus in Asia and Australasia with keys to identification. Gard Bull Singapore 21:1–186

    Google Scholar 

  • Costich DE, Meagher TR, Yurkow EJ (1991) A rapid means of sex determination in Silene latifolia by use of flow cytometry. Plant Mol Biol Rep 9:359–370

    Google Scholar 

  • Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111

    CAS  PubMed  Google Scholar 

  • Docters van Leeuwen WM (1936) Krarakatu, 1883–1933 A. Ann Jard Botan Buitenzorg. Brill, Leiden

  • Grant SR (1999) Genetics of gender dimorphism in higher plants. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin Heidelberg New York, pp 247–274

  • Harrison RD, Yamamura N (2003) A few more hypotheses for the evolution of dioecy in figs (Ficus, Moraceae). Oikos 100:628–635

    Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89:9–13

    CAS  Google Scholar 

  • Janzen DH (1979) How to be a fig. Annu Rev Ecol Syst 10:13–51

    Article  Google Scholar 

  • Krause O (1930) Cytologische studien bei den Urticales. Dtsch Bot Ges Ber 48:9–13

    Google Scholar 

  • Mandolino G, Carboni A, Forapani S, Faeti V, Ranalli P (1999) Identification of markers linked to the male sex in dioecious hemp (Cannabis sativa I.). Theor Appl Genet 98:86–92

    Google Scholar 

  • Mulcahy DL, Weeden NF, Kesselli R, Carroll SB (1992) DNA probes for the Y-chromosome of Silene latifolia, a dioecious angiosperm. Sex Plant Reprod 5:86–88

    Google Scholar 

  • Nordborg M, Tavar S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  CAS  PubMed  Google Scholar 

  • Ohri D, Khoshoo TN (1987) Nuclear DNA contents in the genus Ficus (Moraceae). Plant Syst Evol 156:1–4

    Google Scholar 

  • Pijnacker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Can J Genet Cytol 26:415–419

    Google Scholar 

  • Purrington CB, Smith J (1995) Sexual dimorphism of dormancy and survivorship in buried seeds of Silene latifolia. J Ecol 83:795–800

    Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES IV (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    CAS  PubMed  Google Scholar 

  • Rogstad SH (1992) Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708

    Google Scholar 

  • Ruas CF, Fairbanks DJ, Evans RF, Stutz HC, Andersen WR, Ruas PM (1998) Male-Specific DNA in the dioecious species Atriplex garrettii (Chenopodiaceae). Am J Bot 85:162–167

    CAS  Google Scholar 

  • Sakai AK, Weller SG (1999) Gender and sexual dimorphism in flowering plants: a review of terminology, biogeographic patterns, ecological correlates, and phylogenetic approaches. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin Heidelberg New York, pp 1–31

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Storey WB (1955) Sex inheritance in figs. California Fig Institute. Proceedings of the Annual Research Conference 9:15–17

    Google Scholar 

  • Storey WB (1975) Figs. In: Janick J, Moore JN (eds) Advances in fruit breeding. EAGR vol 38 number 12. Purdue University Press, West Lafayette, Ind., pp 568–589

  • Tas ICQ, van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714

    Article  PubMed  Google Scholar 

  • Valdeyron G, Lloyd DG (1979) Sex differences and flowering phenology in the common fig, Ficus carica L. Evolution 33:673–685

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Weiblen GD (2000) Phylogenetic relationships of functionally dioecious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot 97:1342–1357

    Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of the sex forms in the phanerogamic flora. Bibl Genet 3:1–62

    Google Scholar 

  • Zang YH, Distilio VS, Rehman F, Avery A, Mulcahy D, Kesseli R (1998) Y chromosome specific markers and the evolution of dioecy in the genus Silene. Genome 41:141–147

    Google Scholar 

Download references

Acknowledgements

We acknowledge Hans de Jong and Henny Verhaar (University of Wageningen, the Netherlands) for the cytogenetic analyses, Piet Stam (University of Wageningen, the Netherlands) for statistical advice and Sophie Ahmed (University of Leeds, UK) for sequencing the male-specific AFLP fragment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. van Dijk.

Additional information

Publication 3311 NIOO-KNAW Netherlands Institute of Ecology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrish, T.L., Koelewijn, H.P. & van Dijk, P.J. Identification of a male-specific AFLP marker in a functionally dioecious fig, Ficus fulva Reinw. ex Bl. (Moraceae). Sex Plant Reprod 17, 17–22 (2004). https://doi.org/10.1007/s00497-004-0208-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-004-0208-x

Keywords

Navigation