Skip to main content
Log in

Coevolution of apomixis and genome size within the genus Hypericum

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Trends concerning coevolution of mode of reproduction and genome size were elucidated by screening both components in 71 species/subspecies of the genus Hypericum. Two independent agamic complexes were identified (sections Ascyreia with ten, and Hypericum with five apomictic species). In the phylogenetically younger section Hypericum, the relative DNA content of apomicts is increased solely by polyploidy. The apomicts of the evolutionarily older section Ascyreia have significantly larger genomes than all other species due to polyploidization and higher DNA content per chromosome. An accumulation of retroelements might be one reason for the larger genomes. The male fertility of the apomicts was reduced compared to sexuals, although all apomicts were facultative pseudogamous, forming reduced male gametes. Another form of apomixis (obligate pseudogamous with unreduced male gametes), probably indicating an escape from interspecific sterility, was found in H. scabrum, the only case of asexual seed formation outside of sections Ascyreia and Hypericum. The described scenario for evolution of apomixis in relation to genome size deserves consideration in harnessing of apomixis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2000) Variation in nuclear DNA amount (C-value) in monocots and its significance. In: Wilson KL, Morrison DA (eds) Monocots: systematic and evolution. CSIRO, Melbourne, pp 137–146

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    Google Scholar 

  • Bharathan G (1996) Reproductive development and nuclear DNA content in angiosperms. Am J Bot 83:440–451

    CAS  Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, London

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97:7002–7007

    PubMed  Google Scholar 

  • Greilhuber J (1979) Evolutionary changes of DNA and heterochromatin amounts in the Scilla bifolia group (Liliaceae). Plant Syst Evol [Suppl] 2:263–280

    Google Scholar 

  • Hammer K (2001) Guttiferae (Clusiaceae). In: Hanelt P, IPK (eds) Mansfeld's encyclopedia of agricultural and horticultural crops, vol 3. Springer, Berlin Heidelberg New York, pp 1345–1360

  • Hickey DA (1982) Selfish DNA: a sexuality-transmitted nuclear parasite. Genetics 101:519–531

    CAS  PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (2000) Retrotransposons: central players in the structure, evolution and function of plant genomes. Trends Plant Sci 5:509–510

    CAS  PubMed  Google Scholar 

  • Lihová J, Mártonfi P, Mártonfiová L (2000) Experimental study on reproduction of Hypericum × desetangsii nothosubsp. carinthiacum (A. Fröhl.) N. Robson (Hypericaceae). Caryologia 53:127–132

    Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282

    CAS  PubMed  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

  • Nielsen N (1924) Chromosome numbers in the genus Hypericum (a preliminary note). Hereditas 5:378–382

    Google Scholar 

  • Noack KL (1939) Über Hypericum-Kreuzungen VI. Fortpflanzungsverhältnisse und Bastarde von Hypericum perforatum L.. Z Induk Abstamm Vererbungsl 76:569–601

    Google Scholar 

  • Ohri D, Fritsch RM, Hanelt P (1998) Evolution of genome size in Allium (Alliaceae). Plant Syst Evol 210:57–86

    Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  CAS  PubMed  Google Scholar 

  • Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Robson NKB (1977) Studies in the genus Hypericum L. (Guttiferae). 1. Infrageneric classification. Bull Br Mus (Nat Hist) Bot 5:293–355

    Google Scholar 

  • Robson NKB (1981) Studies in the genus Hypericum L. (Guttiferae). 2. Characters of the genus. Bull Br Mus (Nat Hist) Bot 8:55–226

    Google Scholar 

  • Robson NKB (1985) Studies in the genus Hypericum L. (Guttiferae). 3. Sections 1. Campylosporus to 6a. Umbraculoides. Bull Br Mus (Nat Hist) Bot 12:163–325

    Google Scholar 

  • Robson NKB (2001) Studies in the genus Hypericum L. (Guttiferae) 4(1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bull Br Mus (Nat Hist) Bot 31:37–88

    Google Scholar 

  • Robson NKB (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Sections 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Br Mus (Nat Hist) Bot 32:61–123

    Google Scholar 

  • Roche D, Hanna WW, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349

    Google Scholar 

  • Wright S, Finnegan D (2001) Genome evolution: sex and the transposable element. Curr Biol 11:R296–R299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank many botanical gardens for their kind supply of seed samples, R. Fritsch for the collection of seeds from H. scabrum in Uzbekistan and Armenia, R. Rieger for critical reading of the manuscript and U. Tiemann for design of Fig. 1 as well as Leane Börner and Heidi Block for help with flow cytometric analyses, chromosome counting and determination of pollen stainability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Matzk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzk, F., Hammer, K. & Schubert, I. Coevolution of apomixis and genome size within the genus Hypericum . Sex Plant Reprod 16, 51–58 (2003). https://doi.org/10.1007/s00497-003-0174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-003-0174-8

Keywords

Navigation