Skip to main content

Advertisement

Log in

Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The impacts of climate change and possible adaptations to food security are a global concern and need greater focus in arid and semi-arid regions. It includes scenario of Coupled Model Intercomparison Phase 5 (CMIP-RCP8.5). For this purpose, two DSSAT maize models (CSM-CERES and CSM-IXIM) were calibrated and tested with two different maize cultivars namely Single Cross 10 (SC10) and Three Way Cross 324 (TW24) using a dataset of three growing seasons in Nile Delta. SC10 is a long-growing cultivar that is resistant to abiotic stresses, whereas TW24 is short and sensitive to such harsh conditions. The calibrated models were then employed to predict maize yield in baseline (1981–2010) and under future time slices (2030s, 2050s, and 2080s) using three Global Climate Models (GCMs) under CMIP5-RCP8.5 scenario. In addition, the use of various adaptation options as shifting planting date, increasing sowing density, and genotypes was included in crop models. Simulation analysis showed that, averaged over three GCMs and two crop models, the yield of late maturity cultivar (SC10) decreased by 4.1, 17.2, and 55.9% for the three time slices of 2030s, 2050s, and 2080s, respectively, compared to baseline yield (1981–2010). Such reduction increased with early maturity cultivar (TW24), recording 12.4, 40.6, and 71.3% for near (2030s), mid (2050s), and late century (2080s) respectively relative to baseline yield. The most suitable adaptation options included choosing a stress-resistant genotype, changing the planting date to plus or minus 30 days from baseline planting date, and raising the sowing density to 9 m−2 plants. These insights could minimize the potential reduction of climate change-induced yields by 39% by late century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The majority of the datasets are available in the article and supplementary material. Other datasets are available upon request from the corresponding author.

Code availability

On request, the corresponding author will provide the R code for the analyses.

References

  • Abbas G, Ahmad S, Ahmad A, Nasim W, Fatima Z, Hussain S, Habib ur Rehman M, Khan MA, Hasanuzzaman M, Fahad S, Boote KJ, Hoogenboom G (2017) Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agric For Meteorol 247:42–55

    Article  Google Scholar 

  • Ali MGM, Ibrahim MM, El Baroudy A, Fullen M, Omar EH, Ding Z, Kheir AMS (2020) Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta. Front Earth Sci. https://doi.org/10.1007/s11707-019-0806-4

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, GarciaVile M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Muller C, Kumar SN, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Rezaei EE, Ruane AC, Semenov MA, Shcherbak I, Stockle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf I, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Asseng S, Kheir AMS, Kassie BT, Hoogenboom G, Abdelaal AIN, Haman DZ, Ruane AC (2018) "Can Egypt become self-sufficient in wheat?". Environ Res Lett 13 (094012): https://doi.org/10.1088/1748-9326/aada1050

  • Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Liu B, Minoli S, Montesino San Martin M, Müller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Glob Chang Biol 25:155–173

    Article  Google Scholar 

  • Attia A, El-Hendawy S, Al-Suhaibani N, Tahir MU, Mubushar M, dos Santos Vianna M, Ullah H, Mansour E, Datta A (2021) Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: effect of soil, genotype and crop management. Field Crops Res 260:107981

    Article  Google Scholar 

  • Badr A, El-Shazly HH, Tarawneh RA, Börner A (2020) Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 9(5):565. https://doi.org/10.3390/plants9050565

    Article  CAS  Google Scholar 

  • Ban H-Y, Sim D, Lee K-J, Kim J, Kim KS, Lee B-W (2015) Evaluating maize growth models “CERES-Maize” and “IXIM-Maize” under elevated temperature conditions. J Crop Sci Biotechnol 18(4):265–272

    Article  Google Scholar 

  • Ben Nouna B, Katerji N, Mastrorilli M (2003) Using the CERES-Maize model in a semiarid mediterranean environment. II new modelling of leaf area and water stress functions. Eur J Agron 19:115–123

    Article  Google Scholar 

  • Braga RP, Cardoso MJ, Coelho JP (2008) Crop model based decision support for maize (Zea mays L.) silage production in Portugal. Eur J Agron 28(3):224–233

    Article  Google Scholar 

  • Bu LD, Chen XP, Li SQ, Liu JL, Zhu L, Luo SS, Hill RL, Zhao Y (2015) The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China. Agric Water Manage 148:1–9

    Article  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129(4):1773–1780. https://doi.org/10.1104/pp.002170

    Article  CAS  Google Scholar 

  • Ding Z, Ali EF, Elmahdy AM, Ragab KE, Seleiman MF, Kheir AMS (2021) Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agric Water Manag 244:106626

    Article  Google Scholar 

  • Ding Z, Koriem MA, Ibrahim SM, Antar AS, Ewis MA, He Z, Kheir AMS (2020) Seawater intrusion impacts on groundwater and soil quality in the northern part of the Nile Delta, Egypt. Environ Earth Sci 79(13):313

    Article  CAS  Google Scholar 

  • Dorji T, Hopping KA, Meng F, Wang S, Jiang L, Klein JA (2020) Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric Ecosyst Environ 291:106795

    Article  Google Scholar 

  • Ehrlich PR, Harte J (2015) Opinion: To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1519841112

    Article  Google Scholar 

  • Emori S, Taylor K, Hewitson B, Zermoglio F, Juckes M, Lautenschlager M, Stockhause M (2016) "CMIP5 data provided at the IPCC Data Distribution Centre." Fact Sheet of the Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA) of the Intergovernmental Panel on Climate Change (IPCC), 8

  • FAOSTAT (2020) Food and Agriculture Organization of the United Nations Statistics Division. http://faostat.fao.org/site/567/DesktopDefault.aspx. Accessed Nov 2020

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–8. https://doi.org/10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Filho EIF, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858

    Article  Google Scholar 

  • Heng LK, Asseng S, Mejahed K, Rusan M (2007) Optimizing wheat productivity in two rain-fed environments of the West Asia-North Africa region using a simulation model. Eur J Agron 26(2):121–129

    Article  Google Scholar 

  • Hoogenboom G, Porter CH, Boote KJ, Shelia V, Wilkens PW, Singh U, White JW, Asseng S, Lizaso JI, Moreno LP, Pavan W, Ogoshi R, Hunt LA, Tsuji GY, Jones JW (2019) "The DSSAT crop modeling ecosystem. In: p.173–216 [K.J. Boote, editor] Advances in crop modeling for a sustainable agriculture." Burleigh Dodds Science Publishing, Cambridge, United Kingdom https://doi.org/10.19103/AS.2019.0061.10

  • Huang M, Wang J, Wang B, Liu DL, Yu Q, He D, Wang N, Pan X (2020) Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5 °C and 2 °C global warming. Environ Res Lett 15(024015). https://doi.org/10.1088/1748-9326/ab1066ca

  • Huang SB, Lv LH, Zhu JC, Li YB, Tao HB, Wang P (2018) Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Field Crops Res 215:66–73

    Article  Google Scholar 

  • Jacovides CP, Kontoyiannis H (1995) Statistical procedures for the evaluation of evapotranspiration computing models. Agric Water Manag 27(3–4):365–371

    Article  Google Scholar 

  • Jeunessea IL, Cirelli D, Aubin D, Larru C, Sellami H, Afifif S, Bellin A, Benabdallah S, Birdi DN, Deidda R, Dettori M, Engin G, Herrmann F, Ludwig R, Mabrouk B, Majone B, Paniconi C, Soddu A (2016) Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci Total Environ 543:981–996

    Article  CAS  Google Scholar 

  • Jones CA, Kiniry JR (1986) "CERES-Maize; a simulation model of maize growth and development." Texas University Press 198194: College Station, TX, USA, 1986

  • Kamara MM, Rehan M, Ibrahim KM, Alsohim AS, Elsharkawy MM, Kheir AMS, Hafez EM, El-Esawi MA (2020) Genetic diversity and combining ability of white maize inbred lines under different plant densities. Plants 9(9):1140. https://doi.org/10.3390/plants9091140

    Article  CAS  Google Scholar 

  • Kheir AMS, Ali EF, He Z, Ali OAM, Feike T, Kamara MM, Ahmed M, Eissa MA, Fahmy AE, Ding Z (2021) Recycling of sugar crop disposal to boost the adaptation of canola (Brassica napus L.) to abiotic stress through different climate zones. J Environ Manag 281:111881

    Article  Google Scholar 

  • Kheir AMS, Alrajhi AA, Ghoneim AM, Ali EF, Magrashi A, Zoghdan MG, Abdelkhalik SAM, Fahmy AE, Elnashar A (2021) Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric Water Manag 256:107122

    Article  Google Scholar 

  • Kheir AMS, Ding Z, Ali MGM, Feike T, Abdelaal AIN, Elnashar A (2020) "Wheat crop modelling for higher production." In: Ahmed M. (eds) Systems modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_6

  • Killia D, Bussottia F, Raschi A, Haworth M (2017) Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol Plant 159:130–147

    Article  CAS  Google Scholar 

  • Kim SH, Kim J, Walko R, Myoung B, Stack D, Kafatos M (2015) Climate change impacts on maize-yield potential in the Southwestern United States. Procedia Environ Sci 29:279–280

    Article  Google Scholar 

  • Koehler A-K (2020) Uncertainties in global crop modelling. Nature Food 1(1):19–20

    Article  Google Scholar 

  • Lizaso JI, Batchelor WD, Boote KJ, Westgate ME, Rochette P, Moreno-Sotomayor A (2005) Evaluating a leaf-level canopy assimilation model linked to CERES-Maize. Agronomy J. https://doi.org/10.2134/agronj2004.0172

    Article  Google Scholar 

  • Lizaso JI, Batchelor WD, Westgate ME (2003a) A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crop Res 80(1):1–17

    Article  Google Scholar 

  • Lizaso JI, Batchelor WD, Westgate ME, Echarte L (2003b) Enhancing the ability of CERES-Maize to compute light capture. Agric Syst 76(1):293–311

    Article  Google Scholar 

  • Lizaso JI, Boote KJ, Jones JW, Porter CH, Echarte L, Westgate ME, Sonohat G (2011) CSM-IXIM: a new maize simulation model for DSSAT Version 4.5. Agronomy J. https://doi.org/10.2134/agronj2010.0423

    Article  Google Scholar 

  • Lizaso JI, Fonseca AE, Westgate ME (2007) Simulating source-limited and sink-limited kernel set with CERES-Maize. Crop Sci. https://doi.org/10.2135/cropsci2006.08.0533

    Article  Google Scholar 

  • Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W (2013) The critical role of extreme heat for maize production in the United States. Nat Clim Chang 3:497–501

    Article  Google Scholar 

  • Magaiaa E, Famba S, Wesström I, Britoa R, Joel A (2017) Modelling maize yield response to plant density and water and nitrogen supply in a semi-arid region. Field Crops Res 205:170–181. https://doi.org/10.1016/j.fcr.2016.1012.1025

  • Medlyn BE, De Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M, Pak B, Smith B, Wang Y-P, Yang X, Crous KY, Drake JE, Gimeno TE, Macdonald CA, Norby RJ, Power SA, Tjoelker MG, Ellsworth DS (2016) Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native Eucalypt woodland. Glob Change Biol 22(8):2834–2851

    Article  Google Scholar 

  • Mereu V, Gallo A, Trabucco A, Carboni G, Spano D (2021) Modeling high-resolution climate change impacts on wheat and maize in Italy. Clim Risk Manag 33:100339

    Article  Google Scholar 

  • Meza FJ, Silva D, Vigil H (2008) Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation alternative. Agric Syst 98(1):21–30

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Mosaad ISM, Serag AHI, Moustafa-Farag M, Seadh AK (2020) Effect of exogenous proline application on maize yield and the optimum rate of mineral nitrogen under salinity stress. J Plant Nutr 43(3):354–370

    Article  CAS  Google Scholar 

  • Mostafa SM, Wahed O, El-Nashar WY, El-Marsafawy SM, Zeleňáková M, Abd-Elhamid HF (2021) Potential climate change impacts on water resources in Egypt. Water 13(12):1715. https://doi.org/10.3390/w13121715

    Article  CAS  Google Scholar 

  • Msowoya K, Madani K, Davtalab R, Mirchi A, Lund JR (2016) Climate change impacts on maize production in the warm heart of Africa. Water Resour Manag 30(14):5299–5312

    Article  Google Scholar 

  • Rattalino Edreira JI, Budakli Carpici E, Sammarro D, Otegui ME (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-10011-10149-y

    Article  CAS  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Muller C, Ameth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Nuemann K, Piontek F, Pugh TAM, Schmid E, Stefhest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273

    Article  CAS  Google Scholar 

  • Roxburgh CW, Rodriguez D (2016) Ex-ante analysis of opportunities for the sustainable intensification of maize production in Mozambique. Agric Syst 142:9–22

    Article  Google Scholar 

  • Sánchez B, Rasmussen A, Porter JR (2014) Temperatures and the growth and development of maize and rice: a review. Glob Change Biol 20(2):408–417

    Article  Google Scholar 

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in Northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Tachie-Obeng E, Akponikpè PBI, Adiku S (2013) Considering effective adaptation options to impacts of climate change for maize production in Ghana. Environ Dev 5:131–145

    Article  Google Scholar 

  • Tanumihardjo SA, McCulley L, Roh R, Lopez-Ridaura S, Palacios-Rojas N, Gunaratna NS (2020) Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob Food Sec 25:107;2411–2502. https://doi.org/10.1016/j.gfs.2019.100327

  • Tao F, Rötter RP, Palosuo T, Gregorio Hernández Díaz-Ambrona C, Mínguez MI, Semenov MA, Kersebaum KC, Nendel C, Specka X, Hoffmann H, Ewert F, Dambreville A, Martre P, Rodríguez L, Ruiz-Ramos M, Gaiser T, Höhn JG, Salo T, Ferrise R, Bindi M, Cammarano D, Schulman AH (2018) Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob Chang Biol 24(3):1291–1307. https://doi.org/10.1111/gcb.14019

    Article  Google Scholar 

  • Taoa F, Zhang Z, Zhang S, Rötter RP, Shi W, Xiao D, Liu Y, Wang M, Liu F, Zhang H (2016) Historical data provide new insights into response and adaptation ofmaize production systems to climate change/variability in China. Field Crop Res 185:1–11

    Article  Google Scholar 

  • Tebaldi C, Debeire K, Eyring V, Fischer E, Fyfe J, Friedlingstein P, Knutti R, Lowe J, O’Neill B, Sanderson B, van Vuuren D, Riahi K, Meinshausen M, Nicholls Z, Tokarska KB, Hurtt G, Kriegler E, Lamarque JF, Meehl G, Moss R, Bauer SE, Boucher O, Brovkin V, Byun YH, Dix M, Gualdi S, Guo H, John JG, Kharin S, Kim Y, Koshiro T, Ma L, Olivié D, Panickal S, Qiao F, Rong X, Rosenbloom N, Schupfner M, Séférian R, Sellar A, Semmler T, Shi X, Song Z, Steger C, Stouffer R, Swart N, Tachiiri K, Tang Q, Tatebe H, Voldoire A, Volodin E, Wyser K, Xin X, Yang S, Yu Y, Ziehn T (2021) Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst Dynam 12(1):253–293

    Article  Google Scholar 

  • Tian BJ, Zhu JC, Nie YS, Xu CL, Meng QF, Wang P (2019) Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. J Agron Crop Sci 205:77–87

    Article  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Ray DK (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci 115(26):6644

    Article  CAS  Google Scholar 

  • Tojo Soler CM, Sentelhas PC, Hoogenboom G (2007) Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur J Agron 27(2–4):165–177. https://doi.org/10.1016/j.eja.2007.1003.1002

    Article  Google Scholar 

  • Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS (2016) Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospects. Agr Ecosyst Environ 216:356–373

    Article  Google Scholar 

  • Tsimba R, Edmeades GO, Millner JP, Kemp PD (2013) The effect of planting date on maize grain yields and yield components. Field Crop Res 150:135–144

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1):5

    Article  Google Scholar 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AG, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler AK, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O’Leary GK, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck B, Supit I, Tao F, Wolf J, Zhang Z (2018) Multi-model ensembles improve predictions of crop-environment-management interactions. Glob Chang Biol. https://doi.org/10.1111/gcb.14411

    Article  Google Scholar 

  • Wang J, Wang E, Yang X, Zhang FS, Yin H (2012) Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Change 113:825–840

    Article  Google Scholar 

  • Wang J, Wang E, Yin H, Feng LP, Zhang JP (2014) Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agric for Meteorol 195:89–101

    Article  Google Scholar 

  • Wilby R, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. https://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf

  • Willmott CJ (1984) "On the evaluation of model performance in physical geography". In Spatial Statistics and Models Gaile GL, Willmott CJ (eds) Reidel D: Boston: 443–460

  • Xu T, Li K, Engel BA, Jia H, Leng L, Sun Z, Yu SL (2019) Optimal adaptation pathway for sustainable low impact development planning under deep uncertainty of climate change: a greedy strategy. J Environ Manag 248:109280

    Article  Google Scholar 

  • Yakoub A, Lloveras J, Biau A, Lindquist JL, Lizaso JI (2017) Testing and improving the maize models in DSSAT: development, growth, yield, and N uptake. Field Crops Res 212(95–106):1. https://doi.org/10.1016/j.fcr.2017.1007.1002

    Article  Google Scholar 

  • Yang H, Huang T, Ding M, Lu DL, Lu WP (2017) High temperature during grain filling impacts on leaf senescence in waxy maize. Agronomy J 109(3):906–916. https://doi.org/10.2134/agronj2016.08.0452

    Article  CAS  Google Scholar 

  • Zabel F, Müller C, Elliott J, Minoli S, Jägermeyr J, Schneider JM, Franke JA, Moyer E, Dury M, Francois L, Folberth C, Liu W, Pugh TAM, Olin S, Rabin SS, Mauser W, Hank T, Ruane AC, Asseng S (2021) Large potential for crop production adaptation depends on available future varieties. Glob Change Biol 27(16):3870–3882

    Article  Google Scholar 

  • Zaki NM, Ahmed AG, Hassanein MS, Manal FM, Tawfik MM (2014) Yield and yield components of two maize hybrids as influenced by water deficit and amino cat fertilizer. Middle East J Appl Sci 4(3):648–654

    Google Scholar 

  • Zeng Z, Piao S, Li LZX, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood EF, Friedlingstein P, Mao J, Estes LD, Myneni RB, Peng S, Shi X, Seneviratne SI, Wang Y (2017) Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Chang 7(6):432–436

    Article  Google Scholar 

  • Zhao J, Yang XG, Dai SW, Lv S, Wang J (2015) Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China. Eur J Agron 67:12–19

    Article  Google Scholar 

  • Zohry A, Ouda S, Noreldin T (2016) "Solutions for maize production consumption gap in Egypt." In Proceedings of the 4th African Regional ICID Conference Aswan, Egypt, 26–28: 24-28

Download references

Acknowledgements

We are very grateful to Dr. Alex. C. Ruane (NASA, New York, USA) for supplying us with study area downscaled scenarios of RCP8.5.

Funding

This research was funded by Taif University Researchers Supporting Project number (TURSP-2020/110), Taif University, Saudi Arabia. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group project no. RGP-275.

Author information

Authors and Affiliations

Authors

Contributions

Marwa Ali: writing – original draft, methodology, software, formal analysis, visualization. Mukhtar Ahmed: formal analysis, writing – review and editing. Mahmoud Ibrahim: conceptualization, methodology, resources, writing – review and editing. Ahmed El Baroudy: resources, writing – review and editing. Esmat Ali: resources, funding acquisition, writing – review and editing. Mohamed Shokr: methodology, resources. Ali Aldosari: funding acquisition, writing – review and editing. Ali Majrashi: funding acquisition, writing – review and editing. Ahmed Kheir: supervision, methodology, resources, writing – review and editing.

Corresponding author

Correspondence to Ahmed M. S. Kheir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.G.M., Ahmed, M., Ibrahim, M.M. et al. Optimizing sowing window, cultivar choice, and plant density to boost maize yield under RCP8.5 climate scenario of CMIP5. Int J Biometeorol 66, 971–985 (2022). https://doi.org/10.1007/s00484-022-02253-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02253-x

Keywords

Navigation