Skip to main content

Advertisement

Log in

A simple approach for the development of urban climatic maps based on the urban characteristics in Tainan, Taiwan

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Motivated by the increasing thermal load in urban environment, this work established Urban Climatic map (UCmap) focusing on thermal environment issues based on urban development factors, e.g., land cover and building characteristics, representing thermal load of human body and ventilation path in the urban structures. In the established process of UCmap in this work, Tainan city, which is a highly developed city in southern Taiwan, is selected as the research area. A 50-m resolution grid is used to capture urban development factors and the climate data based on 1 year of mobile and fix-point measurements, from which the thermal load and the wind environment map are constructed. The results herein reveal that a higher urban development level is associated with a higher thermal load, and similar areas are more likely than others to suffer from an extreme thermal load and low wind pass conditions. Open and sparse low-rise buildings constitute the most appropriate urban characteristics for urban built environment in Tainan. By the simple approach of establishing UCmap, the microclimate condition and development intensity of regions can be easily detected and linked, for example the compact high-rise areas should be limited by floor area ratio in order to prevent the formation of hot spots. The government, urban planners, and architects without a meteorological background can efficiently obtain climate information by way of mapping the certain area, and making regulations to mitigate the growing problem of thermal stress and urban heat island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acero JA, Herranz-Pascual K (2015) A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Build Environ 93:245

    Article  Google Scholar 

  • Acero JA, Kupski S, Arrizabalaga J, Katzschner L (2015) Urban climate multi-scale modelling in Bilbao (Spain): a review. Procedia Eng 115:3

    Article  Google Scholar 

  • Alcoforado MJ, Andrade H, Lopes A (2009) Application of climatic guidelines to urban planning: the example of Lisbon (Portugal). Landscape Urban Plan 90:56–65

    Article  Google Scholar 

  • AL-Yahyai S, Charabi Y, Gastli A, Al-Alawi S (2010) Assessment of wind energy potential locations in Oman using data from existing weather stations. Renew Sustainable Energy Rev 14:1428–1436

    Article  Google Scholar 

  • Arnold CL Jr, Gibbons CJ (1996) Impervious surface coverage: the emergence of a key environmental indicator. J Am Plan Assoc 62(2):243–258

    Article  Google Scholar 

  • Ashie Y, Kono T (2011) Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo Bay area. Int J Climatol 31(2):174–188

    Article  Google Scholar 

  • Baker LA, Brazel AJ, Selover N, Martin C, McIntyre N, Steiner FR, Musacchio L (2002) Urbanization and warming of phoenix (Arizona, USA): impacts, feedbacks and mitigation. Urban Ecosyst 6(3):183–203

    Article  Google Scholar 

  • Bounoua L, Collatz GJ, Randall D (2000) Sensitivity of climate to changes in NDVI. J Clim 13:2277

    Article  Google Scholar 

  • Central Weather Bureau of Taiwan (2015) Monthly report on climate system. http://www.cwb.gov.tw/V7/forecast/long/long_season.htm

  • Charalampopoulos I, Chronopoulou-Sereli A (2005) Mapping the urban green area influence on local climate under windless light wind conditions: the case of western part of Athens, Greece. Acta Climatologica 38-39:25–31

    Google Scholar 

  • Chen L, Ng E (2011) Quantitative urban climate mapping based on a geographical database: a simulation approach using Hong Kong as a case study. Int J Appl Earth Obs Geoinf 13(4):586

    Article  Google Scholar 

  • Chen L, Ng E, An XP, Ren C, He J, Lee M, Wang U (2012) Sky view factor analysis of street canyons and its implications for intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. Int J Climatol 32(1):121–136

    Article  CAS  Google Scholar 

  • Chithra SV, Harindranathan Nair MV, Amarnath A, Anjana NS (2015) Impacts of impervious surfaces on the environment. Int J Eng Sci Invention 4(5):27–31

    Google Scholar 

  • Dawod G, Mirza M, Al-Ghamdi K (2011) GIS-based spatial mapping of flash flood hazards in Makkah city, Saudi Arabia. J Geogr Inf Syst 3(3):217–223

    Google Scholar 

  • Dimitriou E, Zacharias I (2010) Identifying microclimatic, hydrologic and land use impacts on a protected wetland area by using statistical models and GIS techniques. Math Comput Model 51:200–205

    Article  Google Scholar 

  • Eliasson I, Svensson M (2003) Spatial air temperature variations and urban land use-a statistical approach. Meteorol Appl 10(02):135–149

    Article  Google Scholar 

  • Fanger P (1967) Calculation of thermal comfort, introduction of a basic comfort equation. ASHRAE Trans 73(2):III4.1–III4.20

    Google Scholar 

  • Frazer L (2005) Paving paradise: the peril of impervious surfaces. Environ Health Persp 113:A457–A462

    Google Scholar 

  • Gál T, Unger J (2008) Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build Environ 44(1):198–206

    Article  Google Scholar 

  • Ghiaus C, Allard F, Santamouris M, Georgakis C, Nicol F (2006) Urban environment influence on natural ventilation potential. Build Environ 41(4):395–406

    Article  Google Scholar 

  • Glenn EP, Doody TM, Guerschman JP, Huete A, King EA, McVicar TR, Zhang Y (2011) Actual evapotranspiration estimation by ground and remote sensing methods: the Australian experience. Hydrol Process 25(26):4103–4116

    Article  Google Scholar 

  • Grimmond C, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteor 38(9):1262–1292

    Article  Google Scholar 

  • Höppe P (1993) Heat balance modelling. Experientia 49:741–746

    Article  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    Article  Google Scholar 

  • Johnson LF, Trout TJ (2012) Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin Valley. Remote Sens 4:439–455

    Article  Google Scholar 

  • Kaufmann R, Zhou L, Myneni R, Tucker C, Slayback D, Shabanov N, Pinzon J (2003) The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data. Geophys Res Lett 30(22):2147

    Article  Google Scholar 

  • Kent E (2011) Wind patterns and the heat island in Phoenix, Arizona: 1993-2008. J Arizona Nevada Acad Sci 42(2):92–103

    Article  Google Scholar 

  • Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment. Int J Life Cycle Assess 12(1):16–23

    Article  Google Scholar 

  • Kotharkar R, Surawar M (2015) Land use, land cover, and population density impact on the formation of canopy urban heat islands through traverse survey in the Nagpur urban area, India. J Urban Plann Dev 142(1) doi:10.1061/(ASCE)UP.1943-5444.0000277, 04015003

  • Kurn DK, Bretz SE, Akbari H (1994) The potential for reducing urban air temperatures and energy consumption through vegetative cooling, Proceedings of the 1994 summer study on energy effects in builidngs. Pacific Grove http://www.osti.gov/bridge/servlets/purl/10180633-hLSlld/native/10180633.PDF

  • Liao FC, Cheng MJ, Hwang RL (2015) Influence of urban microclimate on air-conditioning energy needs and indoor thermal comfort in houses. Adv Meteorol 2015(2015):585623

    Google Scholar 

  • Lin TP, Yang SR, Matzarakis A (2015) Customized rating assessment of climate suitability (CRACS): climate satisfaction evaluation based on subjective perception. Int J Biometeorol 59(12):1825–1837

    Article  Google Scholar 

  • Long HL, Tang GP, Li XB (2007) Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J Environ Manag 83(3):351–364

    Article  Google Scholar 

  • Lu J, Li C, Yu C, Jin M, Dong S (2012) Regression analysis of the relationship between urban heat island effect and urban canopy characteristics in a mountainous city, Chongqing. Indoor and Built Environ 21(6):821–836

    Article  Google Scholar 

  • Lüttig G (1978) Geoscientific maps for land-use planning: a certain approach how to communicate by new types of maps. Cartography 18:95–101

    Google Scholar 

  • Mallick J, Rahman A (2012) Impact of population density on the surface temperature and micro-climate of Delhi. Curr Sci 102:1708–1713

    Google Scholar 

  • Matzarakis A, Endler C (2010) Adaptation of thermal bioclimate under climate change conditions—the example of physiologically equivalent temperature in Freiburg, Germany. Int J Biometeorol 54:479–483

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334

    Article  Google Scholar 

  • Matzarakis A, Rockle R, Richter C, Hofl H, Steinicke W, Streifeneder M, Mayer H (2008) Planungsrelevante Bewertung des Stadtklimas—Am Beispiel von Freiburg im Breisgau. Gefahrstoffe Reinhalt Luft 68:334–340

    Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49

    Article  Google Scholar 

  • Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates. 2nd ed. Methuen

  • Peterson TC, Owen TW (2005) Urban heat island assessment: metadata are important. J Clim 18:2637–2646

    Article  Google Scholar 

  • Quan P, Leephakpreeda T (2015) Assessment of wind energy potential for selecting wind turbines: an application to Thailand. Sustain Energy Technol Assess 11:17–26

    Article  Google Scholar 

  • Ren C, Ng E, Katzschner L (2010) Urban climatic map studies: a review. Int J Climatol 31(15):2213–2233

    Article  Google Scholar 

  • Ren C, Spit T, Lenzholzer S, Yim HLS, Heusinkveld B, van Hove B, Katzschner L (2012) Urban climate map system for Dutch spatial planning. Int J Appl Earth Obs Geoinf 18:207–221

    Article  Google Scholar 

  • Ren C, Lau KL, Yiu KP, Ng E (2013) The application of urban climatic mapping to the urban planning of high-density cities: the case of Kaohsiung, Taiwan. Cities 31:1–16

    Article  Google Scholar 

  • Schwarz N, Schlink U, Franck U, Großmann K (2012) Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—an application for the city of Leipzig (Germany). Ecol Indic 18:693–704

    Article  Google Scholar 

  • Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1:89–95

    Article  Google Scholar 

  • Smith C, Lindley S, Levermore G (2009) Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: the case of Manchester. Theor Appl Climatol 98(1–2):19–35

    Article  Google Scholar 

  • Suder A, Szymanowski M (2014) Determination of ventilation channels in urban area: a case study of Wrocław. Pure Appl Geophys 171:965–975

    Article  Google Scholar 

  • Sun D, Kafatos M (2007) Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys Res Lett 34(24):L24406

    Article  Google Scholar 

  • UN. World Urbanization Prospects (2014) Revision. United Nations Department of Economic and Social Affairs

  • VDI (1998) Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: climate. VDI guideline 3787. Part 2. Beuth, Berlin

    Google Scholar 

  • Wang WW, Zhu LZ, Wang RC (2004) An analysis on spatial variation of urban human thermal comfort in Hangzhou, China. J Environ Sci (China) 16:332–338

    Google Scholar 

  • Weier J, Herring D (2000) Measuring vegetation (NDVI & EVI). NASA Earth Observatory http://earthobservatory.nasa.gov/Features/MeasuringVegetation/

  • Weng Q, Rajasekar U, Hu X (2011) Modeling urban heat islands and their relationship with impervious surface and vegetation abundance by using aster images. IEEE Trans Geosci Remote Sens 49:4080–4089

    Article  Google Scholar 

  • Wong MS, Nichol JE (2013) Spatial variability of frontal area index and its relationship with urban heat island intensity. Int J Remote Sens 34(3):885–896

    Article  Google Scholar 

  • Wong MS, Nichol JE, To PH, Wang J (2010) A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build Environ 45(8):1880–1889

    Article  Google Scholar 

  • Wong MS, Nichol JE, Ng YY (2011) A study of the “wall effect” caused by proliferation of high-rise buildings using GIS techniques. Landscape Urban Plan 102(4):245–253

    Article  Google Scholar 

  • Xiao RB, Ouyang Z, Zheng H, Li WF, Erich S, Wang XK (2007) Spatial pattern of impervious surface and their impacts on land surface temperature in Beijing, China. J Environ Sci 19(2):250–256

    Article  Google Scholar 

  • Yim SHL, Fung JCH, Lau AKH, Kot SC (2007) Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system. J Geophys Res 12:D05106

    Google Scholar 

  • Zhang W, Mak CM, Ai ZT, Siu WM (2011) A study of the ventilation and thermal comfort of the environment surrounding a new university building under construction. Indoor Built Environ 21:568–575

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of Taiwan, for financially supporting this research under Contract No 104-2221-E-006-217-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Ping Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Lin, TP. & Lin, CT. A simple approach for the development of urban climatic maps based on the urban characteristics in Tainan, Taiwan. Int J Biometeorol 61, 1029–1041 (2017). https://doi.org/10.1007/s00484-016-1282-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1282-0

Keywords

Navigation