Skip to main content

Advertisement

Log in

Wind constraints on the thermoregulation of high mountain lizards

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Thermal biology of lizards affects their overall physiological performance. Thus, it is crucial to study how abiotic constraints influence thermoregulation. We studied the effect of wind speed on thermoregulation in an endangered mountain lizard (Iberolacerta aurelioi). We compared two populations of lizards: one living in a sheltered rocky area and the other living in a mountain ridge, exposed to strong winds. The preferred temperature range of I. aurelioi, which reflects thermal physiology, was similar in both areas, and it was typical of a cold specialist. Although the thermal physiology of lizards and the structure of the habitat were similar, the higher wind speed in the exposed population was correlated with a significant decrease in the effectiveness thermoregulation, dropping from 0.83 to 0.74. Our results suggest that wind reduces body temperatures in two ways: via direct convective cooling of the animal and via convective cooling of the substrate, which causes conductive cooling of the animal. The detrimental effect of wind on thermoregulatory effectiveness is surprising, since lizards are expected to thermoregulate more effectively in more challenging habitats. However, wind speed would affect the costs and benefits of thermoregulation in more complex ways than just the cooling of animals and their habitats. For example, it may reduce the daily activity, increase desiccation, or complicate the hunting of prey. Finally, our results imply that wind should also be considered when developing conservation strategies for threatened ectotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat 142:272–295

    Article  Google Scholar 

  • Aguado S, Braña F (2014) Thermoregulation in a cold-adapted species (Cyren’s rock lizard, Iberolacerta cyreni): influence of thermal environment and associated costs. Can J Zool 92:955–964. doi:10.1139/cjz-2014-0096

    Article  Google Scholar 

  • Amo L, López P, Martín J (2007) Habitat deterioration affects body condition of lizards: a behavioral approach with Iberolacerta cyreni lizards inhabiting ski resorts. Biol Conserv 135:77–85. doi:10.1016/j.biocon.2006.09.020

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Angilletta MJ, Niewairowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268. doi:10.1016/S0306-4565(01)00094-8

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi:10.1111/j.1365-2699.2006.01482.x

    Article  Google Scholar 

  • Arribas O (1994) Una nueva especie de lagartija de los Pirineos Orientales: Lacerta (Archaeolacerta) aurelioi sp. nov. (Reptilia: Lacertidae). Bollettino del Museo Regionale di Scienze Naturali di Torino 12:327–351

    Google Scholar 

  • Arribas O (1997) Lacerta aurelioi Arribas, 1994. In: Pleguezuelos JM (ed) Distribución y Biogeografía de los Anfibios y Reptiles de España y Portugal. Monografías de Herpetología, vol. 3. Colección Monográfica Tierras del Sur. Universidad de Granada – Asociación Herpetológica Española, Granada, pp. 216–218

    Google Scholar 

  • Arribas O (2002) Lacerta aurelioi. In: Pleguezuelos JM, Márquez R, Lizana M (eds) Atlas y Libro Rojo de los anfibios y reptiles de España. Dirección General de Conservación de la Naturaleza-Asociación Herpetológica Española, Madrid, pp. 218–219

    Google Scholar 

  • Arribas O (2010) Activity, microhabitat selection and thermal behavior of the Pyrenean rock lizards Iberolacerta aranica (Arribas, 1993), I. aurelioi (Arribas, 1994) and I. bonnali (Lantz, 1927) (Squamata: Sauria: Lacertidae). Herpetozoa 23:3–23

    Google Scholar 

  • Arribas O, Galán P (2005) Reproductive characteristics of the Pyrenean High-Mountain lizards: Iberolacerta aranica (Arribas, 1993), Ib. aurelioi (Arribas, 1994) and Ib. bonnali (Lantz, 1927). Anim Biol 55:163–190. doi:10.1163/1570756053993505

    Article  Google Scholar 

  • Bakken GS, Angilletta MJ (2014) How to avoid errors when quantifying thermal environments. Funct Ecol 28:96–107. doi:10.1111/1365-2435.12149

    Article  Google Scholar 

  • Berg MP, Kiers ET, Driessen G, Van Der Heijden M, Kooi BW, Kuenen F, Liefting M, Verhoef HA, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16:587–598. doi:10.1111/j.1365-2486.2009.02014.x

    Article  Google Scholar 

  • Bestion E, Clobert J, Cote J (2015) Dispersal response to climate change: scaling down to intraspecific variation. Ecol Lett 18:1226–1233. doi:10.1111/ele.12502

    Article  Google Scholar 

  • Blouin-Demers G, Nadeau P (2005) The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behaviour. Ecology 86:560–566. doi:10.1890/04-1403

    Article  Google Scholar 

  • Blouin-Demers G, Weatherhead PJ (2001) Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82:3025–3043. doi:10.1890/0012-9658(2001)082[3025:TEOBRS]2.0.CO;2

    Article  Google Scholar 

  • Blouin-Demers G, Weatherhead PJ (2002) Habitat-specific behavioural thermoregulation by black rat snakes (Elaphe obsoleta obsoleta). Oikos 97:59–68. doi:10.1034/j.1600-0706.2002.970106.x

    Article  Google Scholar 

  • Buckley LB, Ehrenberger JC, Angilletta MJ (2015) Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct Ecol 29:1038–1047. doi:10.1111/1365-2435.12406

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  • Carvalho SB, Brito JC, Crespo EJ, Possingham HP (2010) From climate change predictions to actions—conserving vulnerable animal groups in hotspots at a regional scale. Glob Change Biol 16:3257–3270. doi:10.1111/j.1365-2486.2010.02212.x

    Article  Google Scholar 

  • Chevin LM, Lande R (2015) Evolution of environmental cues for phenotypic plasticity. Evolution 69:2767–2775. doi:10.1111/evo.12755

    Article  Google Scholar 

  • Claussen DL (1967) Studies of water loss in two species of lizards. Comp Biochem Physiol 20:115–130. doi:10.1016/0010-406X(67)90728-1

    Article  Google Scholar 

  • Crawley MJ (2012) The R book. Wiley, Chichester, UK

    Book  Google Scholar 

  • Crossman ND, Bryan BA, Summers DM (2012) Identifying priority areas for reducing species vulnerability to climate change. Divers Distrib 18:60–72. doi:10.1111/j.1472-4642.2011.00851.x

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. P Nat Acad Sci USA 105:6668–6672. doi:10.1073/pnas.0709472105

    Article  CAS  Google Scholar 

  • Díaz JA, Iraeta P, Monasterio C (2006) Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J Therm Biol 31:237–242. doi:10.1016/j.jtherbio.2005.10.001

    Article  Google Scholar 

  • Graae BJ, De Freene P, Kolb A, Brunet J, Chabrerie O, Verheyen K, Pepin N, Heinken T, Zobel M, Shevtsova A, Nijs I, Milbau A (2012) On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19. doi:10.1111/j.1600-0706.2011.19694.x

    Article  Google Scholar 

  • Groves CR, Game ET, Anderson MG, Cross M, Enquist C, Ferdana Z, Girvetz E, Gondor A, Hall KR, Higgins J, Marshall R, Popper K, Schill S, Shafer SL (2012) Incorporating climate change into systematic conservation planning. Biodivers Conserv 21:1651–1671. doi:10.1007/s10531-012-0269-3

    Article  Google Scholar 

  • Gunderson AR, Stillman JH (2015) Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. P Roy Soc Lond B Bio 282:20150401. doi:10.1098/rspb.2015.0401

    Article  Google Scholar 

  • Heath JE (1970) Behavioral regulation of body temperature in poikilotherms. Physiologist 13:399–410

    CAS  Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    Article  CAS  Google Scholar 

  • Huey RB (1974) Behavioral thermoregulation in lizards: importance of associated costs. Science 184:1001–1003. doi:10.1126/science.184.4140.1001

    Article  Google Scholar 

  • Huey RB, Slatkin M (1976) Cost and benefits of lizard thermoregulation. Q Rev Biol 51:363–384

    Article  CAS  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366. doi:10.1086/346135

    Article  Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JA, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos T Roy Soc B 367:1665–1679. doi:10.1098/rstb.2012.0005

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. doi:10.1111/j.1461-0248.2008.01277.x

    Article  Google Scholar 

  • Keppel G, Van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L, Schut AGT, Hopper SD, Franklin SE (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob Ecol Biogeogr 21:393–404. doi:10.1111/j.1466-8238.2011.00686.x

    Article  Google Scholar 

  • Ladyman M, Bradshaw D (2003) The influence of dehydration on the thermal preferences of the western tiger snake, Notechis scutatus. J Comp Physiol B 173:239–246. doi:10.1007/s00360-003-0328-x

    CAS  Google Scholar 

  • Logan ML, Fernandez SG, Calsbeek R (2015) Abiotic constraints on the activity of tropical lizards. Funct Ecol 29:694–700. doi:10.1111/1365-2435.12379

    Article  Google Scholar 

  • Maia-Carneiro T, Dorigo TA, Rocha CFD (2012) Influences of seasonality, thermal environment and wind intensity on the thermal ecology of Brazilian sand lizards in a restinga remnant. South American Journal of Herpetology 7:241–251. doi:10.2994/057.007.0306

    Article  Google Scholar 

  • Maiorano L, Amori G, Capula M, Falcucci A, Masi M, Montemaggiori A, Pottier J, Psomas A, Rondinini C, Russo D, Zimmermann NE, Boitani L, Guisan A (2013) Threats from climate change to terrestrial vertebrate hotspots in Europe. PLoS One 8:e74989. doi:10.1371/journal.pone.0074989

    Article  CAS  Google Scholar 

  • Martín J, Salvador A (1993) Thermoregulatory behaviour of rock lizards in response to tail loss. Behaviour 124:123–136. doi:10.1163/156853993X00533

    Article  Google Scholar 

  • Martin TL, Huey RB (2008) Why “suboptimal” is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:E102–E118. doi:10.1086/527502

    Article  Google Scholar 

  • McCain CM (2010) Global analysis of reptile elevational diversity. Glob Ecol Biogeogr 19:541–553. doi:10.1111/j.1466-8238.2010.00528.x

    Google Scholar 

  • Monasterio C, Salvador A, Iraeta P, Díaz JA (2009) The effects of thermal biology and refuge availability on the restricted distribution of an alpine lizard. J Biogeog 36:1673–1684. doi:10.1111/j.1365-2699.2009.02113.x

    Article  Google Scholar 

  • Nicolau J, Baró M (2009) El Parc Natural Comunal de les Valls del Comapedrosa. Planificació i gestió d’un nou espai protegit al Principat d’Andorra. Revista del CENMA 3:3–11

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Lasanta T, Moreno JIL (2008) Climate change in Mediterranean Mountains during the 21st century. Ambio 37:280–285. doi:10.1579/0044-7447(2008)37[280:CCIMMD]2.0.CO;2

    Article  Google Scholar 

  • Ortega Z, Mencía A, Pérez-Mellado V (2016a) Are becoming mountain habitats more suitable for thermoregulation of generalist than cold-adapted lizards? PeerJ 4:e2085. doi:10.7717/peerj.2085

    Article  Google Scholar 

  • Ortega Z, Mencía A, Pérez-Mellado V (2016b) The peak of thermoregulation effectiveness: thermal biology of the Pyrenean rock lizard, Iberolacerta bonnali (Squamata, Lacertidae). J Therm Biol 56:77–83. doi:10.1016/j.jtherbio.2016.01.005

    Article  Google Scholar 

  • Ortega Z, Pérez-Mellado V, Garrido M, Guerra C, Villa-García A, Alonso-Fernández T (2014) Seasonal changes in thermal biology of Podarcis lilfordi (Squamata, Lacertidae) consistently depend on habitat traits. J Therm Biol 39:32–39. doi:10.1016/j.jtherbio.2013.11.006

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JE, Butchart SH, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Clim Change 5:215–224. doi:10.1038/nclimate2448

    Article  Google Scholar 

  • Pérez-Mellado V, Cheylan M, Martínez-Solano I (2009) Iberolacerta aurelioi. The IUCN Red List of Threatened Species. Version 2015.2. URL: www.iucnredlist.org>. Accessed 29 Oct 2015

  • Pohlert T (2014) The Pairwise Multiple Comparison) of Mean Ranks Package (PMCMR). R package. URL: https://cran.r-project.org/web/packages/PMCMR/vignettes/PMCMR.pdf. Accessed 29 Oct 2015

  • Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecol Monogr 39:227–244. doi:10.2307/1948545

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 29 Oct 2015

  • Sagonas K, Valakos ED, Pafilis P (2013) The impact of insularity on the thermoregulation of a Mediterranean lizard. J Therm Biol 38:480–486. doi:10.1016/j.jtherbio.2013.08.004

    Article  Google Scholar 

  • Scheers H, Van Damme R (2002) Micro-scale differences in thermal habitat quality and a possible case of flexibility in the thermal physiology of lacertid lizards. Oecologia 132:323–331. doi:10.1007/s00442-002-0970-0

    Article  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163. doi:10.1890/04-0232

    Article  Google Scholar 

  • Sears MW, Angilletta MJ (2015) Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am Nat. doi:10.1086/680008

    Google Scholar 

  • Sears MW, Raskin E, Angilletta MJ (2011) The world is not flat: defining relevant thermal landscapes in the context of climate change. Integr Comp Biol 51:666–675. doi:10.1093/icb/icr111

    Article  Google Scholar 

  • Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos T Roy Soc B 367:1607–1614. doi:10.1098/rstb.2012.0036

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. State University of New York at Stony Brook, New York

    Google Scholar 

  • Stevenson RD (1985) The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am Nat 126:362–386

    Article  Google Scholar 

  • Sun LX, Shine R, Debi Z, Zhengren T (2001) Biotic and abiotic influences on activity patterns of insular pit-vipers (Gloydius shedaoensis, Viperidae) from north-eastern China. Biol Conserv 97:387–398

    Article  Google Scholar 

  • Tracy CR, Christian KA (2005) Preferred temperature correlates with evaporative water loss in hylid frogs from northern Australia. Physiol Biochem Zool 78:839–846. doi:10.1086/432151

    Article  Google Scholar 

  • Winne CT, Ryan TJ, Leiden Y, Dorcas ME (2001) Evaporative water loss in two natricine snakes, Nerodia fasciata and Seminatrix pygaea. J Herpetol 35:129–133. doi:10.2307/1566035

    Article  Google Scholar 

  • Žagar A, Carretero M, Osojnik N, Sillero N, Vrezec A (2015) A place in the sun: interspecific interference affects thermoregulation in coexisting lizards. Behav Ecol Sociobiol 69:1127–1137. doi:10.1007/s00265-015-1927-8

    Article  Google Scholar 

  • Zamora-Camacho FJ, Reguera S, Moreno-Rueda G (2015) Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain). Int J Biometeorol:1–11. doi:10.1007/s00484-015-1063-1

Download references

Acknowledgments

We thank two anonymous reviewers for their useful comments that helped us to improve the manuscript. We thank Sergi Riba and Jordi Nicolau for their great help providing us accommodation and guidance in Andorra. We thank Alberto Parada for helping with fieldwork, as well as Mario Garrido, Ana Pérez-Cembranos, Gonzalo Rodríguez and Alicia León for their support during writing. We also thank Mary Trini Mencía and Joe McIntyre for linguistic revision. Lizards were sampled under licences of the Ministeri de Turismo i Medi ambient of the Govern d’Andorra. Financial support was provided to ZO and AM by predoctoral grants of the University of Salamanca. This work was also supported by the research project CGL2012-39850-CO2-02 from the Spanish Ministry of Science and Innovation. All research was conducted in compliance with ethical standards and procedures of the University of Salamanca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaida Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, Z., Mencía, A. & Pérez-Mellado, V. Wind constraints on the thermoregulation of high mountain lizards. Int J Biometeorol 61, 565–573 (2017). https://doi.org/10.1007/s00484-016-1233-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1233-9

Keywords

Navigation