Skip to main content

Advertisement

Log in

Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006–2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006–2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, Kazzaz M (2013) Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). Int J Biometeorol 57:197–205

    Article  Google Scholar 

  • Aboulaich N, Bouziane H, Kadiri M, Trigo MM, Riadi H, Kazzaz M, Merzouki A (2009) Pollen production in anemophilous species of the Poaceae family in Tetouan (NW Morocco). Aerobiologia 25:27–38

    Article  Google Scholar 

  • Aguilera F, Orlandi F, Ruiz-Valenzuela L, Msallem M, Fornaciari M (2015) Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure. Agric For Meteorol 203:208–216

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Aznarte JL, Benítez JM, Nieto D, de Linares C, Díaz de la Guardia C, Alba F (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32:1218–1225

    Article  Google Scholar 

  • Belmonte J, Canela M (2002) Modelling aerobiological time series. Application to Urticaceae. Aerobiologia 18:287–295

    Article  Google Scholar 

  • Bourjea J, Dalleau M, Derville S, Beudard F, Marmoex C, M’Soili A, Roos D, Ciccione S, Frazier J (2015) Seasonality, abundance, and fifteen-year trend in green turtle nesting activity at Itsamia, Moheli, Comoros. Endang Species Res 27:265–276

    Article  Google Scholar 

  • Bousquet J, Anto J, Auffray C, Akdis M, Cambon-Thomsen A, Keil T, Haahtela T, Lambrecht BN, Postma DS, Sunyer J, Valenta R, Akdis CA, Annesi-Maesano I, Arno A, Bachert C, Ballester F, Basagana X, Baumgartner U, Bindslev-Jensen C, Brunekreef B, Carlsen KH, Chatzi L, Crameri R, Eveno E, Forastiere F, Garcia-Aymerich J, Guerra S, Hammad H, Heinrich J, Hirsch D, Jacquemin B, Kauffmann F, Kerkhof M, Kogevinas M, Koppelman GH, Kowalski ML, Lau S, Lodrup-Carlsen KC, Lopez-Botet M, Lotvall J, Lupinek C, Maier D, Makela MJ, Martinez FD, Mestres J, Momas I, Nawijn MC, Neubauer A, Oddie S, Palkonen S, Pin I, Pison C, Rancé F, Reitamo S, Rial-Sebbag E, Salapatas M, Siroux V, Smagghe D, Torrent M, Toskala E, van Cauwenberge P, van Oosterhout AJ, Varraso R, von Hertzen L, Wickman M, Wijmenga C, Worm M, Wright J, Zuberbier T (2011) MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy 66(5):596–604

    Article  CAS  Google Scholar 

  • Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, Travaglini A (2014) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30:25–33

    Article  Google Scholar 

  • Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer-Verlag, New York, USA

    Book  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3–33

    Google Scholar 

  • Cryer JD, Chan KS (2008) Time series analysis with applications in R, 2nd edn. Springer, New York, USA

    Google Scholar 

  • Currie KI, Brailsford G, Nichol S, Gomez A, Sparks R, Lassey KR, Riedel K (2011) Tropospheric 14CO2 at Wellington, New Zealand: the world’s longest record. Biogeochemistry 104:5–22

    Article  CAS  Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P (2007) Allergenic pollen and pollen allergy in Europe. Allergy 62:976–990

    Article  Google Scholar 

  • Dagum EB, Luati A (2003) Global and local statistical properties of fixed-length nonparametric smoothers. Stat Method Appl 11:313–333

    Article  Google Scholar 

  • Estrella N, Menzel A, Krämer U, Behrendt H (2006) Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol 51:49–59

    Article  Google Scholar 

  • Fernández-Llamazares A, Belmonte J, Boada M, Fraixedas S (2014) Airborne pollen records and their potential applications to the conservation of biodiversity. Aerobiologia 30:111–122

    Article  Google Scholar 

  • Fernández-Rodríguez S, Adams-Groom B, Silva-Palacios I, Caeiro E, Brandao R, Ferro R, Gonzalo-Garijo A, Smith M, Tormo R (2015) Comparison of Poaceae pollen counts recorded at sites in Portugal, Spain and the UK. Aerobiologia 31:1–10

    Article  Google Scholar 

  • Frenguelli G, Passalacqua G, Bonini S, Fiocchi A, Incorvaia C, Marcucci F, Tedeschini E, Canonica GW, Frati F (2010) Bridging allergologic and botanical knowledge in seasonal allergy: a role for phenology. Ann Allerg Asthma Im 105(3):223–227

    Article  Google Scholar 

  • Galán C, Cariñanos P, Alcázar P, Domínguez-Vilches E (2007) Spanish aerobiology network (REA): management and quality manual. Servicio de Publicaciones, Universidad de Córdoba, Córdoba, Spain

    Google Scholar 

  • Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63

    Article  Google Scholar 

  • García-Mozo H (2011) The use of aerobiological data on agronomical studies. Ann Agric Environ Med 18:159–164

    Google Scholar 

  • García-Mozo H, Mestre A, Galán C (2010) Phenological trends in southern Spain: a response to climate change. Agric For Meteorol 150:575–580

    Article  Google Scholar 

  • García-Mozo H, Oteros JA, Galán C (2016) Impact of land cover changes and climate on the main airborne pollen types in Southern Spain. Sci Total Environ 548-549:221–228

    Article  Google Scholar 

  • García-Mozo H, Yaezel L, Oteros J, Galán C (2014) Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Sci Total Environ 473-474:103–109

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2009) Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biol 15:1930–1948

    Article  Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Gucel S, Guvensen A, Ozturk M, Celik A (2013) Analysis of airborne pollen fall in Nicosia (Cyprus). Environ Monit Assess 185:157–169

    Article  CAS  Google Scholar 

  • Hamid N, Ali SM, Talib F, Sadiq I, Ghufran MA (2015) Spatial and temporal variations of pollen concentrations in Islamabad (Pakistan): effect of meteorological parameters and impact on human health. Grana 54(1):53–67

    Article  Google Scholar 

  • Harvey AC, Peters S (1990) Estimation procedures for structural time series model. J Forecast 9:89–108

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 36:257–344

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) May the definition of pollen season influence aerobiological results? Aerobiologia 22:13–25

    Article  Google Scholar 

  • Kasprzyk I (2006) Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiologia 22:185–195

    Article  Google Scholar 

  • Kasprzyk I, Walanus A (2010) Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). J Environ Monit 12:906–916

    Article  CAS  Google Scholar 

  • Kasprzyk I, Walanus A (2014) Gamma, Gaussian and logistic distribution models for airborne pollen grains and fungal spore season dynamics. Aerobiologia 30:369–383

    Article  CAS  Google Scholar 

  • León-Ruiz E, Alcázar P, Domínguez-Vilches E, Galán C (2011) Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia 27:37–50

    Article  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303

    Article  Google Scholar 

  • Mabberley DJ (1987) The plant book. Cambridge University press, Cambridge

    Google Scholar 

  • Makra L, Matyasovszky I, Deàk AJ (2011) Trends in the characteristics of allergenic pollen circulation in central Europe based on the example of Szeged, Hungary. Atmos Environ 45:6010–6018

    Article  CAS  Google Scholar 

  • Meier U (2001) Growth stages of mono- and dicotyledonous plants. BBCH monograph. 2nd ed. Federal Biological Research Centre for Agriculture and Forestry

  • Mevik BH, Wehrens R (2007) The pls package: principal component and partial least squares regressions in R. J Stat Softw 18(2):1–24

    Article  Google Scholar 

  • Moseholm L, Weeke ER, Petersen BN (1987) Forecast of pollen concentrations of Poaceae (grasses) in the air by time series analysis. Pollen Spores 2-3:305–322

    Google Scholar 

  • Ocaña-Peinado F, Valderrama MJ, Aguilera AM (2008) A dynamic regression model for air pollen concentration. Stoch Environ Res Risk Assess 22(Suppl 1):S59–S63

    Article  Google Scholar 

  • Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013a) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57(4):545–555

    Article  CAS  Google Scholar 

  • Oteros J, García-Mozo H, Vázquez L, Mestre A, Domínguez-Vilches E, Galán C (2013b) Modelling olive phenological response to weather and topography. Agric Ecosyst Environ 179:62–68

    Article  Google Scholar 

  • Pauling A, Gehrig R, Clot B (2014) Toward optimized temperature sum parameterizations for forecasting the start of the pollen season. Aerobiologia 30:45–57

    Article  Google Scholar 

  • Peel RG, Ørby PV, Skjøth CA, Kennedy R, Schlünssen V, Smith M, Sommer J, Hertel O (2014) Seasonal variation in diurnal atmospheric grass pollen concentration profiles. Biogeosciences 11:821–832

    Article  Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biol 8(6):531–544

    Article  Google Scholar 

  • Pérez-Badia R, Bouso V, Rojo J, Vaquero C, Sabariego S (2013) Dynamics and behaviour of airborne Quercus pollen in central Iberian Peninsula. Aerobiologia 29:419–428

    Article  Google Scholar 

  • Pérez-Badia R, Rapp A, Morales C, Sardinero S, Galán C, García-Mozo H (2010) Pollen spectrum and risk of pollen allergy in central Spain. Ann Agric Environ Med 17:139–151

    Google Scholar 

  • Petropavlovskikh I, Evans R, McConville G, Manney GL, Rieder HE (2015) The influence of the North Atlantic Oscillation and El Niño-Southern Oscillation on mean and extreme values of column ozone over the United States. Atmos Chem Phys 15:1585–1598

    Article  CAS  Google Scholar 

  • Preda C, Saporta G (2005) PLS regression on a stochastic process. Comput Stat Data An 48:149–158

    Article  Google Scholar 

  • Prieto-Baena JC, Hidalgo PJ, Domínguez-Vilches E, Galán C (2003) Pollen production in the Poaceae family. Grana 42:153–160

    Article  Google Scholar 

  • R Core Team (2015) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (accessed 11 Sept 2015)

  • Ranzi A, Lauriola P, Marletto V, Zinoni F (2003) Forecasting airborne pollen concentrations: development of local models. Aerobiologia 19:39–45

    Article  Google Scholar 

  • Recio M, Docampo S, García-Sánchez J, Trigo MM, Melgar M, Cabezudo B (2010) Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agric For Meteorol 150(7-8):931–940

    Article  Google Scholar 

  • Reyment RA, Jvreskog KG (1996) Applied factor analysis in the natural sciences. Cambridge University Press

  • Rodríguez-Rajo FJ, Jato V, Aira MJ (2003) Pollen content in the atmosphere of Lugo (NW Spain) with reference to meteorological factors (1999-2001). Aerobiologia 19:213–225

    Article  Google Scholar 

  • Rodríguez-Rajo F, Valencia-Barrera RM, Vega-Maray AM, Suárez FJ, Fernández-González D, Jato V (2006) Prediction of airborne Alnus pollen concentration by using ARIMA models. Ann Agric Environ Med 13:25–32

    Google Scholar 

  • Rojo J, Pérez-Badia R (2015) Models for forecasting the flowering of Cornicabra olive groves. Int J Biometeorol 59:1547–1556

    Article  Google Scholar 

  • Rojo J, Rapp A, Lara B, Fernández-González F, Pérez-Badia R (2015) Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Sci Total Environ 538:672–682

    Article  CAS  Google Scholar 

  • Rummel RJ (1988) Applied factor analysis. Northwestern University Press, Evanston

    Google Scholar 

  • Sabariego S, Cuesta P, Fernández-González F, Pérez-Badia R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. Int J Biometeorol 56(2):253–258

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galán C, Martínez-Heras JA, Hervás-Martínez C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with typical Mediterranean climate. Int J Biometeorol 49:355–362

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galán C, Martínez-Heras JA, Hervás-Martínez C (2002) The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clin Exp Allergy 32:1606–1612

    Article  Google Scholar 

  • Sawa T (1978) Criteria for discriminating among alternative regression models. Econometrica 46(6):1273–1291

    Article  Google Scholar 

  • Seasholtz MB, Kowalski B (1993) The parsimony principle applied to multivariate calibration. Anal Chim Acta 277:165–177

    Article  CAS  Google Scholar 

  • Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo A (2015) Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. Int J Biometeorol. doi:10.1007/s00484-015-1026-6

    Google Scholar 

  • Stach A, Smith M, Prieto-Baena JC, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznań, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332

    Article  Google Scholar 

  • Subiza J (2003) Gramínes: Aerobiología y polinosis en España. Alergol Inmunol Clin 18(3):7–11

    Google Scholar 

  • Valderrama MJ, Ocaña FA, Aguilera AM, Ocaña-Peinado FM (2010) Forecasting pollen concentration by a two-step functional model. Biometrics 66:578–585

    Article  Google Scholar 

  • Vallejos RO, Fabré NN, Batista VS, Acosta J (2013) The application of a general time series model to floodplain fisheries in the Amazon. Environ Modell Softw 48:202–212

    Article  Google Scholar 

  • Veriankaitė L, Šaulienė I, Bukantis A (2011) Evaluation of meteorological parameters influence upon pollen spread in the atmosphere. J Environ Eng Landsc 19(1):5–11

    Article  Google Scholar 

  • Voukantsis D, Niska H, Karatzas K, Riga M, Damialis A, Vokou D (2010) Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmos Environ 44:5101–5111

    Article  CAS  Google Scholar 

  • Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manage Sci 6:324–342

    Article  Google Scholar 

  • Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear regression. The Partial Least Squares (PLS) approach to generalized inverses. SIAM J Sci Comput 5(3):735–743

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Itell Lab 58:109–130

    Article  CAS  Google Scholar 

  • Zhou J, Liang Z, Liu Y, Guo H, He D, Zhao L (2015) Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift? Theor Appl Climatol 119:181–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Rojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojo, J., Rivero, R., Romero-Morte, J. et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. Int J Biometeorol 61, 335–348 (2017). https://doi.org/10.1007/s00484-016-1215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1215-y

Keywords

Navigation