Skip to main content
Log in

Validation of the thermophysiological model by Fiala for prediction of local skin temperatures

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The most complete and realistic physiological data are derived from direct measurements during human experiments; however, they present some limitations such as ethical concerns, time and cost burden. Thermophysiological models are able to predict human thermal response in a wide range of environmental conditions, but their use is limited due to lack of validation. The aim of this work was to validate the thermophysiological model by Fiala for prediction of local skin temperatures against a dedicated database containing 43 different human experiments representing a wide range of conditions. The validation was conducted based on root-mean-square deviation (rmsd) and bias. The thermophysiological model by Fiala showed a good precision when predicting core and mean skin temperature (rmsd 0.26 and 0.92 °C, respectively) and also local skin temperatures for most body sites (average rmsd for local skin temperatures 1.32 °C). However, an increased deviation of the predictions was observed for the forehead skin temperature (rmsd of 1.63 °C) and for the thigh during exercising exposures (rmsd of 1.41 °C). Possible reasons for the observed deviations are lack of information on measurement circumstances (hair, head coverage interference) or an overestimation of the sweat evaporative cooling capacity for the head and thigh, respectively. This work has highlighted the importance of collecting details about the clothing worn and how and where the sensors were attached to the skin for achieving more precise results in the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  • Arens EA, Zhang H, Huizenga C (2006) Partial- and whole-body thermal sensation and comfort—part II: non-uniform environmental conditions. J Therm Biol 31:60–66

    Article  Google Scholar 

  • Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561. doi:10.1007/s00421-002-0663-8

    Article  CAS  Google Scholar 

  • Bogerd CP, Rossi RM, Brühwiler PA (2010) Thermal perception of ventilation changes in full-face motorcycle helmets: subject and manikin study. Ann Occup Hyg 55:192–201. doi:10.1093/annhyg/meq074

    Article  Google Scholar 

  • Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300

    Article  CAS  Google Scholar 

  • Casa DJ, Becker SM, Ganio MS, et al. (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342

    Google Scholar 

  • den Hartog E (2002) Evaluation of the THDYN model during student practical tests. In: 10th International Conference on Environmental Ergonomics. Fukuoka, pp 475–478

  • Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86. doi:10.1016/j.jtherbio.2006.10.004

    Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort. Danish Technical Press, Copenhagen

    Google Scholar 

  • Fiala D, Havenith G (2015) Modelling Human Heat Transfer and Temperature Regulation. In: Epstein AGY (ed) The Mechanobiology and Mechanophysiology of Military-Related Injuries. Springer Series, p 38. doi:10.1007/8415_2015_183

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human themoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi:10.1007/s004840100099

    Article  CAS  Google Scholar 

  • Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429-441. doi:10.1007/s00484-011-0424-7

  • Foda E, Almesri I, Awbi HB, Sirén K (2011) Models of human thermoregulation and the prediction of local and overall thermal sensations. Build Environ 46:2023–2032. doi:10.1016/j.buildenv.2011.04.010

    Article  Google Scholar 

  • Formenti D, Ludwig N, Gargano M et al (2013) Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann Biomed Eng 41:863–871

    Article  Google Scholar 

  • Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Text Res J. doi:10.1177/0040517514551458

    Google Scholar 

  • Geng Q, Kuklane K, Holmer I (1998) Tactile sensitivity of gloved hands in the cold operation. Appl Hum Sci J Physiol Anthropol 16:229–236

    Article  Google Scholar 

  • Gerrett N, Ouzzahra Y, Coleby S, et al. (2014) Thermal sensitivity to warmth during rest and exercise: a sex comparison. Eur J Appl Physiol 114:1451–1462. doi:10.1007/s00421-014-2875-0

    Article  Google Scholar 

  • Givoni B, Goldman R (1971) Predicted metabolic energy cost. J Appl Physiol 30:429–433

    CAS  Google Scholar 

  • Havenith G, Richards MG, Wang X, et al. (2008) Apparent latent heat of evaporation from clothing : attenuation and heat pipe effects. J Appl Physiol 104:142–149. doi:10.1152/japplphysiol.00612.2007

    Article  Google Scholar 

  • Havenith G, Bröde P, den Hartog E, et al. (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Article  Google Scholar 

  • Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83

    Article  CAS  Google Scholar 

  • Huizenga C, Hui Z, Arens EA (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699

    Article  Google Scholar 

  • ISO7730 (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organisation for Standardisation, Geneva (Switzerland)

  • ISO7933 (2004) Ergonomics of the thermal environment - Analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organisation for Standardisation, Geneva (Switzerland).

  • ISO8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO9920 (2007) Ergonomics of the thermal environment - estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO11079 (2007) Ergonomics of the thermal environment - Determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Organisation for Standardisation, Geneva (Switzerland).

  • Jack A (2010) Einfluss hoch funktioneller Sporttextilien auf die Thermoregulation von Ausdauerathleten bei unterschiedlichen Umgebungstemperaturen. Kulturwissenschaftlichen Fakultät der Universität, Bayreuth

    Google Scholar 

  • James CA, Richardson AJ, Watt PW, Maxwell NS (2014) Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J Therm Biol 45:141–149. doi:10.1016/j.jtherbio.2014.08.010

    Article  CAS  Google Scholar 

  • Jones BW, Ogawa Y (1993) Transient response of the human clothing system. J Therm Biol 18:413–416

    Article  Google Scholar 

  • Kobayashi Y, Tanabe S (2013) Development of JOS-2 human thermoregulation model with detailed vascular system. Build Environ 66:1–10. doi:10.1016/j.buildenv.2013.04.013

    Article  Google Scholar 

  • Kuklane K, Geng Q, Holmer I (1998) Effect of footwear insulation on thermal responses in the cold. Int J Occup Saf Ergon 4:137–152

    Article  Google Scholar 

  • Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235

    Article  Google Scholar 

  • Li Y, Li F, Liu Y, Luo Z (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575. doi:10.1016/j.jtherbio.2004.08.071

    Article  Google Scholar 

  • Lotens WA, van de Linde FJG, Havenith G (1995) Effect of condensation in clothing on heat transfer. Ergonomics 38:1114–1131

    Article  CAS  Google Scholar 

  • Lundgren K, Kuklane K, Jakobsson K, et al (2015) What is the role of traditional fermented foods to prevent heat strain at work ? In: 31st International Congress on Occupational Health (ICOH), Seoul

  • Mäkinen T, Gavhed D, Holmér I, Rintamäki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81:397–402. doi:10.1007/s004210050060

    Article  Google Scholar 

  • Malchaire J, Piette A, Kampmann B, et al. (2001) Development and validation of the predicted heat strain model. Ann Occup Hyg 45:123–135. doi:10.1093/annhyg/45.2.123

    Article  CAS  Google Scholar 

  • Margaria R (1968) Positive and negative work performances and their efficiencies in human locomotion. Int Zeitschrift für Angew Physiol Einschl Arbeitsphysiologie 25:339–351. doi:10.1007/BF00699624

    CAS  Google Scholar 

  • Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running. Sports Med 39:179–206

    Article  Google Scholar 

  • Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44:1777–1787. doi:10.1016/j.buildenv.2008.11.016

    Article  Google Scholar 

  • Niedermann R, Wyss E, Annaheim S, et al. (2014) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi:10.1007/s00484-013-0687-2

    Article  Google Scholar 

  • Priego Quesada JI, Lucas-Cuevas AG, Gil-Calvo M, et al. (2015a) Effects of graduated compression stockings on skin temperature after running. J Therm Biol 52:130–136. doi:10.1016/j.jtherbio.2015.06.005

    Article  CAS  Google Scholar 

  • Priego Quesada JI, Martínez Guillamón N, Cibrián Ortiz de Anda RM, et al. (2015b) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi:10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  • Psikuta A (2009) Development of an “artificial human” for clothing research. De Monfort University, Leicester

    Google Scholar 

  • Psikuta A, Fiala D, Laschewski G, et al. (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460

    Article  Google Scholar 

  • Psikuta A, Niedermann R, Rossi RM (2013a) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol. doi:10.1007/s00484-013-0669-4

    Google Scholar 

  • Psikuta A, Wang L-C, Rossi RM (2013b) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi:10.1080/15459624.2013.766562

    Article  Google Scholar 

  • Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46:371–384. doi:10.1016/j.ijthermalsci.2006.06.017

    Article  Google Scholar 

  • Smith CE (1991) A transient three-dimensional model of the thermal system. Kansas State University

  • Smith CJ, Havenith G (2011) Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 111:1391–1404. doi:10.1007/s00421-010-1744-8

    Article  Google Scholar 

  • Stolwijk JA (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report. Report No CR-1855.

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

    Article  Google Scholar 

  • Tanaka H, Kitada M, Taniguchi Y, et al (1992) Study on car air conditioning system controlled by car occupants’ skin temperatures—part 2: development of a new air conditioning system. SAE Technical Paper 920170. doi:10.4271/920170

  • Teunissen LPJ, de Haan A, de Koning JJ, Daanen HAM (2012) Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924. doi:10.1088/0967-3334/33/6/915

    Article  CAS  Google Scholar 

  • Tyler CJ (2011) The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol Meas 32:1541–1547. doi:10.1088/0967-3334/32/10/003

    Article  Google Scholar 

  • Wagner JA, Horvath SM (1985) Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol 58:180–186

    CAS  Google Scholar 

  • Wang F, Gao C, Kuklane K, Holmér I (2011) Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Ann Occup Hyg 55:775–783. doi:10.1093/annhyg/mer034

    Article  Google Scholar 

  • Wang F, Annaheim S, Morrissey M, Rossi RM (2013) Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment. Scand J Med Sci Sports 24:1–11. doi:10.1111/sms.12117

    Google Scholar 

  • Wang F, Havenith G, Mayor TS, et al (2014) Clothing real evaporative resistance determined by means of a sweating thermal manikin: a new round-robin study. In: 10th Manikin and Modelling Meeting (10i3m), Tampere, Finland, 7–9 September 2014

  • Werner J, Webb P (1993) A six-cylinder model of human thermoregulation for general use on personal computers. Ann Physiol Anthropol 12:123–134. doi:10.2114/ahs1983.12.123

    Article  CAS  Google Scholar 

  • Wu H, Fan J (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci 47:641–647. doi:10.1016/j.ijthermalsci.2007.04.008

    Article  Google Scholar 

  • Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sci 16:61–75

    Article  CAS  Google Scholar 

  • Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515. doi:10.1088/0967-3334/29/4/007

    Article  Google Scholar 

  • Zatsiorsky V, Prilutsky B (2012) Chapter 7. Eccentric muscle action in human motion. In: biomechanics of skeletal muscles. Human Kinetics, p 536

  • Zhang H, Arens EA, Huizenga C, Han T (2010) Thermal sensation and comfort models for non-uniform and transient environments: part I: local sensation of individual body parts. Build Environ 45:380–388. doi:10.1016/j.buildenv.2009.06.018

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the State Secretariat for Education, Research and Innovation (SBFI C11.0137) under the grant COST Action TU1101 project (http://www.bicycle-helmets.eu/). The authors gratefully acknowledge Dr. Dusan Fiala from Ergonsim (Germany) for his interesting and open discussion, Dr. Matthew Morrissey from Empa (St. Gallen, Switzerland) for his valuable inputs about evaporative cooling within clothing and Karin Lundgren-Kownacki from Lund University (Lund, Sweden) for her expert interpretation of experimental data in the heat. The authors thank all laboratories kindly providing human experimental data, within bygone COST Action 730: Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being (http://www.utci.org/cost.php), especially to Hanu Rintamäki from Finnish Institute for Occupational Health (Oulu, Finland), Igor Mekjavic from Josef Stefan Institute (Ljubljana, Slovenia) and Emiel den Hartog from TNO (The Hague, Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, N., Psikuta, A., Kuklane, K. et al. Validation of the thermophysiological model by Fiala for prediction of local skin temperatures. Int J Biometeorol 60, 1969–1982 (2016). https://doi.org/10.1007/s00484-016-1184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1184-1

Keywords

Navigation