Skip to main content
Log in

Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarabi M, Elshaarawi MAI, Khamis M (1987) Natural-convection in uniformity heated vertical annuli. Int J Heat Mass Transf 30:1381–1389. doi:10.1016/0017-9310(87)90170-0

    Article  CAS  Google Scholar 

  • Annaheim S, Psikuta A, Morrisey M (2014) A new method to assess the influence of textiles properties on human thermophysiology. Part I: thermal resistance. Int J Cloth Sc Technol in press

  • Anttonen H, Niskanen J, Meinander H et al (2004) Thermal manikin measurements—exact or not? Int J Occup Saf Ergon 10:291–300

    Article  Google Scholar 

  • Berger X, Sari H (2000) A new dynamic clothing model. Part 1: heat and mass transfer. Int J Therm Sci 39:673–683. doi:10.1016/S1290-0729(80)00211-6

    Article  Google Scholar 

  • Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Brode P, Havenith G, Wang XX et al (2008) Non-evaporative effects of a wet mid layer on heat transfer through protective clothing. Eur J Appl Physiol 104:341–349. doi:10.1007/s00421-007-0629-y

    Article  Google Scholar 

  • Cain B, Farnworth B (1986) Two new techniques for determining the thermal radiative properties of thin fabrics. J Build Phys 9:301–322

    Article  CAS  Google Scholar 

  • Cengel YA, Ghajar AJ (2007) Heat and mass transfer fundamentals and applications. McGraw-Hill, Boston

    Google Scholar 

  • Fan JT, Luo ZX, Li Y (2000) Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int J Heat Mass Transf 43:2989–3000. doi:10.1016/S0017-9310(99)00235-5

    Article  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Am Physiol Soc 87:1957–1972

    CAS  Google Scholar 

  • Frackiewicz-Kaczmarek J (2013) Determination of the air gap thickness and the contact area under wearing conditions. Doctoral Thesis, Universite de Mulhouse-Haute Alsace

  • Gibson PW (1993) Factors influencing steady-state heat and water-vapor transfer measurements for clothing materials. Text Res J 63:749–764. doi:10.1177/004051759306301208

    Article  CAS  Google Scholar 

  • Gretton JC, Brook DB, Dyson HM, Harlock SC (1998) Moisture vapor transport through waterproof breathable fabrics and clothing systems under a temperature gradient. Text Res J 68:936–941. doi:10.1177/004051759806801209

    Article  CAS  Google Scholar 

  • Ismail MI, Ammar ASA, El-Okeily M (1988) Heat transfer through textile fabrics: mathematical model. Appl Math Model 12:434–440

    Article  Google Scholar 

  • Keiser C, Becker C, Rossi RM (2008) Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J 78:604–613. doi:10.1177/0040517507081309

    Article  CAS  Google Scholar 

  • Konarska M, Soltynski K, Sudol-Szopinska I, Chojnacka A (2007) Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibers Text East Eur 15:73–79

    CAS  Google Scholar 

  • Li Y, Zhu QY (2003) A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity. Numer Heat Transf A Appl 43:501–523. doi:10.1080/10407780390122871

    Article  CAS  Google Scholar 

  • Li X, Wang Y, Lu Y (2011) Effects of body postures on clothing air gap in protective clothing. J Fiber Bioeng Inf 4:277–283

    Article  Google Scholar 

  • Lotens WA, Havenith G (1991) Calculation of clothing insulation and vapor resistance. Ergonomics 34:233–254. doi:10.1080/00140139108967309

    Article  Google Scholar 

  • Mah T, Song G (2010) Investigation of the contribution of garment design to thermal protection. Part 1: characterizing air gaps using three-dimensional body scanning for women’s protective clothing. Text Res J 80(13):1317–1329

    Article  CAS  Google Scholar 

  • Mohanty AK, Dubey MR (1996) Buoyancy induced flow and heat transfer through a vertical annulus. Int J Heat Mass Transf 39:2087–2093. doi:10.1016/0017-9310(95)00280-4

    Article  CAS  Google Scholar 

  • Oliveira AVM, Gaspar AR, Quintela DA (2008) Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. Eur J Appl Physiol 104:679–688. doi:10.1007/s00421-008-0824-5

    Article  Google Scholar 

  • Parsons K (2003) Human thermal environments: the effect of hot, moderate and cold environments on human health, comfort and performance, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Psikuta A, Frackiewicz-Kaczmarek J, Frydrych I, Rossi R (2012a) Quantitative evaluation of air gap thickness and contact area between body and garment. Text Res J 82:1405–1413. doi:10.1177/0040517512436823

    Article  CAS  Google Scholar 

  • Psikuta A, Wang LC, Rossi RM (2013) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi:10.1080/15459624.2013.766562

    Article  Google Scholar 

  • Quintela D, Gaspar A, Borges C (2004) Analysis of sensible heat exchanges from thermal manikin. Eur J Appl Physiol 92:663–668. doi:10.1007/s00421-004-1132-3

    Article  Google Scholar 

  • Richards MGM, Rossi R, Meinander H, Broede P, Candas V, den Hartog E, Holmer I, Nocker W, Havenith G (2008) Dry and wet heat transfer through clothing dependent on the clothing properties under cold conditions. Int J Occup Saf Ergon 14:69–76

    Article  CAS  Google Scholar 

  • Schmid M (2011) Evaluation of dry heat transfer through creased fabric. Master thesis, ETH Zurich

  • Spencer-Smith JL (1977) The physical basis of clothing comfort part 2: heat transfer through dry clothing assemblies. Cloth Res J 5:3–17

    Google Scholar 

  • Umeno T, Hokoi S, Takada S (2001) Prediction of skin and clothing temperatures under thermal transient considering moisture accumulation in clothing. ASHRAE Trans 107:71–81

    Google Scholar 

  • Wang XL (1990) Free convective heat transfer coefficients of a heated full-scale manikin. Climate Buildings 1:17–31

    Google Scholar 

  • Wissler EH, Havenith G (2009) A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air. Eur J Appl Physiol 105:797–808. doi:10.1007/s00421-008-0966-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the members of the workshop at Empa, Jörg Gschwend and Pascal Luzi, for their help and support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, E., Psikuta, A., Bueno, MA. et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. Int J Biometeorol 59, 1701–1710 (2015). https://doi.org/10.1007/s00484-015-0978-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-0978-x

Keywords

Navigation