Skip to main content
Log in

Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999–2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe T, Tokuda Y, Ohde S, Ishimatsu S, Nakamura T, Birrer RB (2009) The relationship of short-term air pollution and weather to ED visits for asthma in Japan. Am J Emerg Med 27:153–159. doi:10.1016/j.ajem.2008.01.013

    Google Scholar 

  • Alves CA, Scotto MG, Freitas MC (2010) Air pollution and emergency admissions for cardiorespiratory diseases in Lisbon (Portugal). Quim Nova 33:337–344. doi:10.1590/S0100-40422010000200020

    CAS  Google Scholar 

  • American Academy of Allergy, Asthma and Immunology (AAAAI), http://www.aaaai.org. Accessed 11 Aug 2014

  • American Lung Association, http://www.lung.org/site/pp.asp?c=dvLUK9O0E&b=22591. Accessed 12 Sept 2014

  • Anderberg MR (1973) Cluster analysis for applications. Academic, New York

    Google Scholar 

  • Andersen ZJ, Wahlin P, Raaschou-Nielsen O, Scheike T, Loft S (2007) Ambient particle source apportionment and daily hospital admissions among children and the elderly in Copenhagen. J Expo Sci Env Epid 17:625–636. doi:10.1038/sj.jes.7500546

    CAS  Google Scholar 

  • Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213. doi:10.1097/EDE.0b013e318190ee08

    Google Scholar 

  • Anderson HR, de Leon AP, Bland JM, Bower JS, Emberlin J, Strachan DP (1998) Air pollution, pollens, and daily admissions for asthma in London 1987–92. Thorax 53:842–848. doi:10.1136/thx.53.10.842

    CAS  Google Scholar 

  • Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD (2013) Heat-related emergency hospitalizations for respiratory diseases in the Medicare population. Am J Resp Crit Care 187:1098–1103. doi:10.1164/rccm.201211-1969OC

    Google Scholar 

  • Atkinson RW, Strachan DP (2004) Role of outdoor aeroallergens in asthma exacerbations: epidemiological evidence. Thorax 59:277–278. doi:10.1136/thx.2003.019133

    CAS  Google Scholar 

  • Barrett K, de Leeuw F, Fiala J, Larssen S, Sundvor I, Fjellsbø L, Dusinska M, Ostatnická J, Horálek J, Černikovský L, Barmpas F, Moussipoulos N, Vlahocostas C (2008) Health impacts and air pollution—an exploration of factors influencing estimates of air pollution impact upon the health of European citizens. European Topic Centre on Air and Climate Change (ETC/ACC), Technical Paper, 2008:13, 48 p. http://acm.docs/docs/ETCACC_TP_2008_13_HealthImpact_AirPoll.pdf

  • Bedeschi E, Campari C, Candela S, Collini G, Caranci N, Frasca G, Galassi C, Francesca G, Vigotti MA (2007) Urban air pollution and respiratory emergency visits at pediatric unit, Reggio Emilia, Italy. J Toxicol Env Heal A 70:261–265. doi:10.1080/15287390600884784

    CAS  Google Scholar 

  • Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513. doi:10.1111/j.1365-2222.2004.02061.x

    CAS  Google Scholar 

  • Beggs PJ, Bambrick HJ (2005) Is the global rise of asthma an early impact of anthropogenic climate change? Environ Health Persp 113:915–919. doi:10.1590/S1413-81232006000300022

    CAS  Google Scholar 

  • Bower D, McGregor GR, Hannah D, Sheridan SC (2007) Development of a spatial synoptic classification scheme for western Europe. Int J Climatol 27:2017–2040. doi:10.1002/joc.1501

    Google Scholar 

  • Braman SS (2006) The global burden of asthma. Chest 130:4S–12S. doi:10.1378/chest.130.1_suppl.4S

    Google Scholar 

  • Cai J, Zhao A, Zhao JZ, Chen RJ, Wang WB, Ha SD, Xu XH, Kan HD (2014) Acute effects of air pollution on asthma hospitalization in Shanghai, China. Environ Pollut 191:139–144. doi:10.1016/j.envpol.2014.04.028

    CAS  Google Scholar 

  • Cakmak S, Dales RE, Coates F (2012) Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J Allergy Clin Immun 129:228–231. doi:10.1016/j.jaci.2011.09.025

    CAS  Google Scholar 

  • Cakmak S, Dales R, Kauri LM, Mahmud M, Van Ryswyk K, Vanos J, Liu L, Kumarathasan P, Thomson E, Vincent R, Weichenthal S (2014) Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ Pollut 189:208–214. doi:10.1016/j.envpol.2014.03.004

    CAS  Google Scholar 

  • Carracedo-Martínez E, Sánchez C, Taracido M, Sáez M, Jato V, Figueiras A (2008) Effect of short-term exposure to air pollution and pollen on medical emergency calls: a case-crossover study in Spain. Allergy 63:347–353. doi:10.1111/j.1398-9995.2007.01574.x

    Google Scholar 

  • Cassiani M, Stohl A, Eckhardt S (2013) The dispersion characteristics of air pollution from the world’s megacities. Atmos Chem Phys 13:9975–9996. doi:10.5194/acp-13-9975-2013

    CAS  Google Scholar 

  • Celenza A, Fothergill J, Kupek E, Shaw RJ (1996) Thunderstorm associated asthma: a detailed analysis of environmental factors. BMJ 312:604–607. doi:10.1136/bmj.312.7031.604

    CAS  Google Scholar 

  • Center for Disease Control and Prevention, http://www.cdc.gov/asthma/faqs.htm. Accessed 11 Apr 2014

  • Chen RJ, Chu C, Tan JG, Cao JS, Song WM, Xu XH, Jiang C, Ma WJ, Yang CX, Chen BC, Gui YH, Kan HD (2010) Ambient air pollution and hospital admission in Shanghai, China. J Hazard Mater 181:234–240. doi:10.1016/j.jhazmat.2010.05.002

    CAS  Google Scholar 

  • Cheng CSQ, Campbell M, Li Q, Li GL, Auld H, Day N, Pengelly D, Gingrich S, Klaassen J, MacIver D, Comer N, Mao Y, Thompson W, Lin H (2009) Differential and combined impacts of extreme temperatures and air pollution on human mortality in south-central Canada. Part I: historical analysis. Air Qual Atmos Health 1:209–222. doi:10.1007/s11869-009-0027-1

    Google Scholar 

  • Chiusolo M, Cadum E, Stafoggia M, Galassi C, Berti G, Faustini A, Bisanti L, Vigotti MA, Maria Patrizia Dessì MP, Cernigliaro A, Mallone S, Pacelli B, Minerba S, Simonato L, Forastiere F (2011) Short-term effects of nitrogen dioxide on mortality and susceptibility factors in 10 Italian cities: The EpiAir Study. Environ Health Persp 119:1233–1238. doi:10.1289/ehp.1002904

    CAS  Google Scholar 

  • Cirera L, García-Marcos L, Giménez J, Moreno-Grau S, Tobías A, Pérez-Fernández V, Elvira-Rendeles B, Guillén JJ, Navarro C (2012) Daily effects of air pollutants and pollen types on asthma and COPD hospital emergency visits in the industrial and Mediterranean Spanish city of Cartagena. Allergol Immunopathol 40:231–237. doi:10.1016/j.aller.2011.05.012

    CAS  Google Scholar 

  • Dales RE, Cakmak S, Burnett RT, Judek S, Coates F, Brook JR (2000) Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. Am J Respir Crit Care Med 162:2087–2090. doi:10.1164/ajrccm.162.6.2001020

    CAS  Google Scholar 

  • Darrow LA, Klein M, Sarnat JA, Mulholland JA, Strickland MJ, Sarnat SE, Russell AG, Tolbert PE (2011) The use of alternative pollutant metrics in time-series studies of ambient air pollution and respiratory emergency department visits. J Expo Sci Env Epid 21:10–19. doi:10.1038/jes.2009.49

    CAS  Google Scholar 

  • Davies RJ, Rusznak C, Devalia JL (1998) Why is allergy increasing? Environmental factors. Clin Exp Allergy 28:8–14. doi:10.1046/j.1365-2222.1998.0280s6008.x

    Google Scholar 

  • DellaValle CT, Triche EW, Leaderer BP, Bell ML (2012) Effects of ambient pollen concentrations on frequency and severity of asthma symptoms among asthmatic children. Epidemiology 23:55–63. doi:10.1097/EDE.0b013e31823b66b8

    Google Scholar 

  • Díaz J, Linares C, Tobías A (2007) Short-term effects of pollen species on hospital admissions in the city of Madrid in terms of specific causes and age. Aerobiologia 23:231–238. doi:10.1007/s10453-007-9067-x

    Google Scholar 

  • Erkara I, Cingi C, Ayranci U, Gurbuz K, Pehlivan S, Tokur S (2009) Skin prick test reactivity in allergic rhinitis patients to airborne pollens. Environ Monit Assess 151:401–412. doi:10.1007/s10661-008-0284-8

    Google Scholar 

  • Fauroux B, Sampil M, Quenel P, Lemoullec Y (2000) Ozone: a trigger for hospital pediatric asthma emergency room visits. Pediatr Pul 30:41–46. doi:10.1002/1099-0496(200007)

    CAS  Google Scholar 

  • Freitas MC, Pacheco AMG, Verburg TG, Wolterbeek HT (2010) Effect of particulate matter, atmospheric gases, temperature, and humidity on respiratory and circulatory diseases’ trends in Lisbon, Portugal. Environ Monit Assess 162:113–121. doi:10.1007/s10661-009-0780-5

    CAS  Google Scholar 

  • Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, Arca M, Perucci CA (2001) Air pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur Respir J 17:1143–1150. doi:10.1183/09031936.01.00005501

    CAS  Google Scholar 

  • Galán C, Cariňanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45:59–63. doi:10.1007/s004840100089

    Google Scholar 

  • Garty BZ, Kosman E, Ganor E, Berger V, Garty L, Wietzen T, Waisman Y, Mimouni M, Waisel Y (1998) Emergency room visits of asthmatic children, relation to air pollution, weather and airborne allergens. Ann Allerg Asthma Im 81:563–570. doi:10.1016/S1081-1206(10)62707-X

    CAS  Google Scholar 

  • Gasparrini A, Armstrong B (2010) Time series analysis on the health effects of temperature: advancements and limitations. Environ Res 110:633–638. doi:10.1016/j.envres.2010.06.005

    CAS  Google Scholar 

  • Giovannini M, Sala M, Riva E, Radaelli G (2010) Hospital admissions for respiratory conditions in children and outdoor air pollution in Southwest Milan, Italy. Acta Paediatr 99:1180–1185. doi:10.1111/j.1651-2227.2010.01786.x

    CAS  Google Scholar 

  • Goldberg A, Confino-Cohen R, Waisel Y (1998) Allergic responses to pollen of ornamental plants: high incidence in the general atopic population and especially among flower growers. J Allergy Clin Immun 102:210–214. doi:10.1016/S0091-6749(98)70088-0

    CAS  Google Scholar 

  • Hayes D Jr, Jhaveri MA, Mannino DM, Strawbridge H, Temprano J (2013) The effect of mold sensitization and humidity upon allergic asthma. Clin Respir J 7:135–144. doi:10.1111/j.1752-699X.2012.00294.x

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265. doi:10.1111/j.1744-7348.1952.tb00904.x

    Google Scholar 

  • Hondula DM, Vanos JK, Gosling SN (2014) The SSC: a decade of climate-health research and future directions. Int J Biometeorol 58:109–120. doi:10.1007/s00484-012-0619-

    CAS  Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63. doi:10.1016/j.atmosenv.2008.09.051

    CAS  Google Scholar 

  • Jamason PF, Kalkstein LS, Gergen PJ (1997) A synoptic evaluation of asthma hospital admissions in New York City. Am J Respir Crit Care Med 156:1781–1788. doi:10.1164/ajrccm. 156.6.96-05028

    CAS  Google Scholar 

  • Jeong JI, Park RJ (2013) Effects of the meteorological variability on regional air quality in East Asia. Atmos Environ 69:46–55. doi:10.1016/j.atmosenv.2012.11.061

    CAS  Google Scholar 

  • Johnson ML (ed) (2005) The Cambridge handbook of age and ageing. Cambridge University Press, Cambridge

    Google Scholar 

  • Jolliffe IT (1990) Principal component analysis: a beginner’s guide. Weather 45:375–382. doi:10.1002/j.1477-8696.1990.tb05558.x

    Google Scholar 

  • Jolliffe IT (1993) Principal components analysis: a beginners guide II. Weather 48:246–253. doi:10.1002/j.1477-8696.1993.tb05899.x

    Google Scholar 

  • Joseph PM (2007) Paradoxical ozone associations could be due to methyl nitrite from combustion of methyl ethers or esters in engine fuels. Environ Int 33:1090–1106. doi:10.1016/j.envint.2007.07.001

    CAS  Google Scholar 

  • Joseph PM, Weiner MG (2002) Visits to physicians after the oxygenation of gasoline in Philadelphia. Arch Environ Health 57:137–154. doi:10.1080/00039890209602929

    CAS  Google Scholar 

  • Kalkstein LS, Corrigan PR (1986) A synoptical climatological approach for geographic analysis: assessment of sulphur dioxide concentrations. Ann Assoc Amer Geogr 76:381–395. doi:10.1111/j.1467-8306.1986.tb00126.x

    Google Scholar 

  • Kalkstein LS, Barthel CD, Nichols MC, Greene JS (1996) A new spatial synoptic classification: application to air mass analysis. Int J Climatol 16:983–1004. doi:10.1002/(SICI)1097-0088(199609)

    Google Scholar 

  • Kassomenos PA (2003a) Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century. Part I. Winter and summer. Theor Appl Climatol 75:65–77. doi:10.1007/s00704-003-0730-z

    Google Scholar 

  • Kassomenos PA (2003b) Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century. Part II. Autumn and spring. Theor Appl Climatol 75:79–92. doi:10.1007/s00704-003-0727-7

    Google Scholar 

  • Kassomenos PA, Sindosi OA, Lolis CJ (2003a) Seasonal variation of the circulation types occurring over southern Greece: a 50 yr study. Clim Res 24(1):33–46. doi:10.3354/cr024033

    Google Scholar 

  • Kassomenos P, Sindosi O, Lolis C, Chaloulakou A (2003b) On the relation between seasonal synoptic circulation types and spatial air quality characteristics in Athens, Greece. J Air Waste Manag Assoc 53:309–324. doi:10.1080/10473289.2003.10466154

    CAS  Google Scholar 

  • Kassomenos PA, Gryparis A, Katsouyanni K (2007) On the association between daily mortality and air mass types in Athens, Greece during winter and summer. Int J Biometeorol 51:315–322. doi:10.1007/s00484-006-0062-7

    Google Scholar 

  • Kassomenos P, Papaloukas C, Petrakis M, Karakitsios S (2008) Assessment and prediction of short term hospital admissions: the case of Athens, Greece. Atmos Environ 42:7078–7086. doi:10.1016/j.atmosenv.2008.06.011

    CAS  Google Scholar 

  • Kassomenos P, Mertzanos G, Petrakis M, Xylaggoura M, Psiloglou B (2010) Hospital admissions and air mass types in Athens, Greece. Int J Environ Pollut 40:236–247. doi:10.1504/IJEP.2010.030896

    CAS  Google Scholar 

  • Katsoulis B, Kassomenos P (2004) Assessment of the air-quality over urban areas by means of biometeorological indices. The case of Athens, Greece. Environ Technol 25:1293–1304. doi:10.1080/09593332508618375

    CAS  Google Scholar 

  • Katsouyanni K, Zmirou D, Spix C, Sunyer J, Schouten JP, Pönkä A, Anderson HR, Le Moullec Y, Wojtyniak B, Vigotti MA, Bacharova L (1995) Short-term effects of air pollution on health: a European approach using epidemiological time-series data. The APHEA project: background, objectives, design. Eur Respir J 8:1030–1038. doi:10.1183/09031936.95.08061030

    CAS  Google Scholar 

  • Keatinge W, Donaldson G (2001) Winter deaths: warm housing is not enough. Br Med J 323:166–167. doi:10.1136/bmj.317.7164.978

    CAS  Google Scholar 

  • Ko FWS, Tam W, Wong TW, Lai CKW, Wong GWK, Leung TF, Ng SSS, Hui DSC (2007) Effects of air pollution on asthma hospitalisation rates in different age groups in Hong Kong. Clin Exp Allergy 37:1312–1319. doi:10.1111/j.1365-2222.2007.02791.x

    CAS  Google Scholar 

  • Köppen W (1931) Grundriss Der Klimakunde. Walter De Gruyter & Co., Berlin

    Google Scholar 

  • Kosman E, Eshel A, Keynan N, Waisel Y (1994) Clustering of allergenic pollen on the basis of skin-responses of atopic patients by matrix analysis. Allergy 49:502–507. doi:10.1111/j.1398-9995.1994.tb01120.x

    CAS  Google Scholar 

  • Lee CC, Sheridan SC, Lin S (2013) Relating weather types to asthma-related hospital admissions in New York State. EcoHealth 9:424–439. doi:10.1007/s10393-012-0803-5

    CAS  Google Scholar 

  • Lelieveld J, Barlas C, Giannadaki D, Pozzer A (2013) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phys 13:7023–7037. doi:10.5194/acp-13-7023-2013

    CAS  Google Scholar 

  • Lierl MB, Hornung RW (2003) Relationship of outdoor air quality to pediatric asthma exacerbations. Ann Allerg Asthma Im 90:28–33. doi:10.1016/S1081-1206(10)63610-1

    Google Scholar 

  • Liu PWG (2009) Simulation of the daily average PM10 concentrations at Ta-Liao with Box-Jenkins time series models and multivariate analysis. Atmos Environ 43:2104–2113. doi:10.1016/j.atmosenv.2009.01.055

    CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214. doi:10.1016/j.taap.2009.01.029

    CAS  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci India 12:49–55

    Google Scholar 

  • Makie T, Harada M, Kinukawa N, Toyoshiba H, Yamanaka T, Nakamura T, Sakamoto M, Nose Y (2002) Association of meteorological and day-of-the-week factors with emergency hospital admissions in Fukuoka, Japan. Int J Biometeorol 46:38–41. doi:10.1007/s00404-001-0110-2

    Google Scholar 

  • Makra L, Juhász M, Borsos E, Béczi R (2004) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49:37–47. doi:10.1007/s00484-004-0208-4

    CAS  Google Scholar 

  • Makra L, Juhász M, Béczi R, Borsos E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64. doi:10.1080/00173130510010558

    Google Scholar 

  • Makra L, Mika J, Bartzokas A, Beczi R, Borsos E, Sümeghy Z (2006a) An objective classification system of air mass types for Szeged, Hungary, with special interest in air pollution levels. Meteorol Atmos Phys 92:115–137. doi:10.1007/s00703-005-0143-x

    Google Scholar 

  • Makra L, Juhász M, Mika J, Bartzokas A, Béczi R, Sümeghy Z (2006b) An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels. Int J Biometeorol 50:403–421. doi:10.1007/s00484-006-0026-y

    Google Scholar 

  • Makra L, Sz T, Bálint B, Süumeghy Z, Sánta T, Hirsch T (2008) Influences of meteorological parameters and biological and chemical air pollutants on the incidence of asthma and rhinitis. Clim Res 37:99–119. doi:10.3354/cr00752

    Google Scholar 

  • Makra L, Sánta T, Matyasovszky I, Damialis A, Karatzas K, Bergmann KC, Vokou D (2010) Airborne pollen in three European cities: detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. Geophys Res-Atmos 115, D24220. doi:10.1029/2010JD014743

    Google Scholar 

  • Makra L, Matyasovszky I, Bálint B (2012) Association of allergic asthma emergency room visits with the main biological and chemical air pollutants. Sci Total Environ 432:288–296. doi:10.1016/j.scitotenv.2012.05.088

    CAS  Google Scholar 

  • Marks G, Colquhoun J, Girgis S, Koski M, Treloar A, Hansen P, Downs S, Car N (2001) Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax 56:468–471. doi:10.1136/thorax.56.6.468

    CAS  Google Scholar 

  • May L, Carim M, Yadav K (2011) Adult asthma exacerbations and environmental triggers: a retrospective review of ED visits using an electronic medical record. Am J Emerg Med 29:1074–1082. doi:10.1016/j.ajem.2010.06.034

    Google Scholar 

  • McGregor GR, Bamzelis D (1995) Synoptic typing and its application to the investigation of weather—air pollution relationships, Birmingham, United Kingdom. Theor Appl Climatol 51:223–236. doi:10.1007/BF00867281

    Google Scholar 

  • Melkonyan A, Kuttler W (2012) Long-term analysis of NO, NO2, and O3 concentrations in North Rhine-Westphalia. Atmos Environ 60:316–326. doi:10.1016/j.atmosenv.2012.06.048

    CAS  Google Scholar 

  • Meng YY, Wilhelm M, Rull RP, English P, Ritz B (2007) Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults. Ann Allerg Asthma Im 98:455–463. doi:10.1016/S1081-1206(10)60760-0

    Google Scholar 

  • Millqvist E (1999) Effect of nasal air temperature on lung function. Allergy 54(57):106–111

    Google Scholar 

  • Monsalve F, Tomas C, Fraile R (2013) Influence of meteorological parameters and air pollutants onto the morbidity due to respiratory diseases in Castilla-La Mancha, Spain. Aerosol Air Qual Res 13:1297–1312. doi:10.4209/aaqr.2012.12.0348

    CAS  Google Scholar 

  • Namdeo A, Tiwary A, Farrow E (2011) Estimation of age-related vulnerability to air pollution: assessment of respiratory health at local scale. Environ Int 37:829–837. doi:10.1016/j.envint.2011.02.002

    CAS  Google Scholar 

  • O’Neill MS, Hajat S, Zanobetti A, Ramirez-Aguilar M, Schwartz J (2005) Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol 50:121–129. doi:10.1007/s00484-005-0269-z

    Google Scholar 

  • Orazzo F, Nespoli L, Ito K, Tassinari D, Giardina D, Funis M, Cecchi A, Trapani C, Forgeschi G, Vignini M, Nosetti L, Pigna S, Zanobetti A (2009) Air pollution, aeroallergens, and emergency room visits for acute respiratory diseases and gastroenteric disorders among young children in six Italian cities. Environ Health Perspect 117:1780–1785. doi:10.1289/ehp.0900599

    CAS  Google Scholar 

  • Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M (2001) Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 12:200–208. doi:10.1097/00001648-200103000-00012

    CAS  Google Scholar 

  • Parsons JP, Mastronarde JG (2005) Exercise-induced bronchoconstriction in athletes. Chest 128:3966–3974. doi:10.1378/chest.128.6.3966

    Google Scholar 

  • Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Kc D, Prakash S, Ross JM, Levy D, Kinney PL (2010) Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Persp 118:1338–1343. doi:10.1289/ehp.0901499

    Google Scholar 

  • Qiu H, Yu ITS, Tian LW, Wang XR, Tse LA, Tam W, Wong TW (2012) Effects of coarse particulate matter on emergency hospital admissions for respiratory diseases: a time-series analysis in Hong Kong. Environ Health Persp 120:572–576. doi:10.1289/ehp.1104002

    CAS  Google Scholar 

  • Rainham DGC, Smoyer-Tomic KE, Sheridan SC, Burnett RT (2005) Synoptic weather patterns and modification of the association between air pollution and human mortality. Int J Environ Health Res 15:347–360

    Google Scholar 

  • Rosas I, McCartney HA, Payne RW, Calderón C, Lacey J, Chapela R, Ruiz-Velazco S (1998) Analysis of the relationships between environmental factors (aeroallergens, air pollution, and weather) and asthma emergency admissions to a hospital in Mexico City. Allergy 53:394–401. doi:10.1111/j.1398-9995.1998.tb03911.x

    CAS  Google Scholar 

  • Saaroni H, Ziv B, Uman T (2010) Does a synoptic classification indicate the NOx pollution potential? The case of the metropolitan area of Tel Aviv, Israel. Water Air Soil Poll 207:139–155. doi:10.1007/s11270-009-0125-6

    CAS  Google Scholar 

  • Scarinzi C, Alessandrini ER, Chiusolo M, Galassi C, Baldini M, Serinelli M, Pandolfi P, Bruni A, Biggeri A, De Togni A, Carreras G, Casella C, Canova C, Randi G, Ranzi A, Morassuto C, Cernigliaro A, Giannini S, Lauriola P, Minichilli F, Gherardi B, Zauli-Sajani S, Stafoggia M, Casale P, Gianicolo EAL, Piovesan C, Tominz R, Porcaro L, Cadum E (2013) Air pollution and urgent hospital admissions in 25 Italian cities: results from the EpiAir2 project. Epidemiol Prev 37:230–241

    Google Scholar 

  • Sheridan SC (2002) The redevelopment of a weather-type classification scheme for North America. Int J Climatol 22:51–68. doi:10.1002/joc.709

    Google Scholar 

  • Sheridan SC (2003) North American weather-type frequency and teleconnection indices. Int J Climatol 23:21–45. doi:10.1002/joc.863

    Google Scholar 

  • Sheridan SC, Kalkstein AJ (2010) Seasonal variability in heat-related mortality across the United States. Nat Hazards 55:291–305. doi:10.1007/s11069-010-9526-5

    Google Scholar 

  • Sheridan SC, Kalkstein AJ, Kalkstein LS (2009) Trends in heat-related mortality in the United States, 1975–2004. Nat Hazards 50:145–160. doi:10.1007/s11069-008-9327-2

    Google Scholar 

  • Silverman RA, Stevenson L, Hastings HM (2003) Age-related seasonal patterns of emergency department visits for acute asthma in an urban environment. Ann Emerg Med 42:577–586. doi:10.1067/mem.2003.283

    Google Scholar 

  • Sindosi OA, Katsoulis BD, Bartzokas A (2003) An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environ Technol 24:947–962. doi:10.1080/09593330309385633

    CAS  Google Scholar 

  • Sousa IV, Pires JCM, Martins EM, Fortes JDN, Alvim-Ferraz MCM, Martins FG (2012) Short-term effects of air pollution on respiratory morbidity at Rio de Janeiro—part II: health assessment. Environ Int 43:1–5. doi:10.1016/j.envint.2012.02.004

    CAS  Google Scholar 

  • Spatial Synoptic Classification Homepage, http://sheridan.geog.kent.edu/ssc.html. Accessed 19 Feb 2014

  • Stieb DM, Beveridge RC, Brook JR, Smith-Doiron M, Burnett RT, Dales RE, Beaulieu S, Judek S, Mamedov A (2000) Air pollution, aeroallergens and cardiorespiratory emergency department visits in Saint John, Canada. J Expo Anal Environ Epidemiol 10:461–477. doi:10.1038/sj.jea.7500112

    CAS  Google Scholar 

  • Stieb DM, Szyszkowicz M, Rowe BH, Leech JA (2009) Air pollution and emergency department visits for cardiac and respiratory conditions: a multi-city time-series analysis. Environ Health 8:25. doi:10.1186/1476-069X-8-25

    Google Scholar 

  • Strausz J (ed) (2003) Asthma bronchiale. Mediszter GlaxoSmithKline, Budapest

    Google Scholar 

  • Tramuto F, Cusimano R, Cerame G, Vultaggio M, Calamusa G, Maida CM, Vitale F (2011) Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy. Environ Health 10: Article No. 31, doi: 10.1186/1476-069X-10-31

  • Trewartha GT (1968) An introduction to climate. McGraw-Hill, New York

    Google Scholar 

  • Tukey JW (1985) The problem of multiple comparisons, in Time Series, 1965–1984, vol II. The Collected Works of John W. Tukey, Wadsworth, Monterey, California

    Google Scholar 

  • Tunnicliffe WS, Hilton MF, Harrison RM, Ayres JG (2001) The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. Eur Respir J 17:604–608

    CAS  Google Scholar 

  • Vaneckova P, Beggs PJ, de Dear RJ, McCracken KWJ (2008) Effect of temperature on mortality during the six warmer months in Sydney, Australia, between 1993 and 2004. Environ Res 108:361–369. doi:10.1016/j.envres.2008.07.015

    CAS  Google Scholar 

  • Vanos JK, Cakmak S, Bristow C, Brion V, Tremblay N, Martin SL, Sheridan SS (2013) Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities. Environ Res 126:66–75. doi:10.1016/j.envres.2013.08.003

    CAS  Google Scholar 

  • Vanos JK, Hebbern C, Cakmak S (2014) Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities. Environ Pollut 185:322–332. doi:10.1016/j.envpol.2013.11.007

    CAS  Google Scholar 

  • Villeneuve PJ, Chen L, Rowe BH, Coates F (2007) Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta, Canada. Environ Health 6:40. doi:10.1186/1476-069X-6-40

    Google Scholar 

  • Wilson AM, Wake CP, Kelly T, Salloway JC (2005) Air pollution, weather, and respiratory emergency room visits in two northern New England cities: an ecological time-series study. Environ Res 97:312–321. doi:10.1016/j.envres.2004.07.010

    CAS  Google Scholar 

  • Wong CM, Atkinson RW, Anderson HR, Hedley AJ, Ma S, Chau PYK, Lam TH (2002) A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. Environ Health Perspect 110:67–77

    CAS  Google Scholar 

  • World Health Organization (WHO) (1999) Manual of the international statistical classification of diseases, injuries, and causes of death, 10th revision. Geneva, Switzerland: World Health Organization (access on July 16, 2014)

  • Yeh KW, Chang CJ, Huang JL (2011) The association of seasonal variations of asthma hospitalization with air pollution among children in Taiwan. Asian Pac J Allergy Immunol 29:34–41. doi:10.1016/S1081-1206(10)60244-X

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gábor Motika (Environmental Conservancy Inspectorate, Szeged, Hungary) for providing daily meteorological data of Szeged; Miklós Juhász (University of Szeged) for providing daily pollen concentration data of Szeged; István Ihász for providing daily seal level pressure grid data using ECMWF ERA Interim Database and Zoltán Sümeghy for the digital mapping in Fig. 1. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 National Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Makra.

Appendix

Appendix

Spatial Synoptic Classification (SSC) weather types

DP (dry polar; type 2) is synonymous with the traditional cP air mass classification. This air mass is generally advected from polar regions around a cold-core anticyclone and is usually associated with the lowest temperatures observed in a region for a particular time of year, as well as clear, dry conditions.

DM (dry moderate; type 1) air is mild and dry. It has no traditional analogy, but is often found with zonal flow in the middle latitudes, especially in the lee of mountain ranges. It also arises when a traditional air mass such as cP or mT has been advected far from its source region and has thus modified considerably.

The DT (dry tropical; type 3) weather type is similar to the cT air mass; it represents the hottest and driest conditions found at any location. There are two primary sources of DT: either it is advected from the desert regions, such as the Sonoran or Sahara Desert, or it is produced by rapidly descending air, whether via orography (such as the chinook) or strong subsidence.

MP (moist polar; type 5) air is a large subset of the mP air mass, weather conditions are typically cloudy, humid, and cool. MP air appears either by inland transport from a cool ocean, or as a result of frontal overrunning well to the south of the region. It can also arise in situ as a modified cP air mass, especially downwind of the Great Lakes.

MM (moist moderate; type 4) is considerably warmer and more humid than MP. The MM air mass typically appears in a zone south of MP air, still in an area of overrunning but with the responsible front much nearer. It can also arise within an mT air mass on days when high cloud cover suppresses the temperature.

MT (moist tropical; type 6), analogous to the traditional mT air mass, is warm and very humid. It is typically found in warm sectors of mid-latitude cyclones or in a return flow on the western side of an anticyclone; as one approaches the tropics this weather type dominates. MT+ (moist tropical plus) is a subset of MT that was derived after the initial classification, to account for the lack of utility of a weather-type scheme in the warm subtropics when one weather type dominates most of the year. It is defined as an MT day where both morning and afternoon temperatures are above seed day means, and thus captures the most “oppressive” subset of MT days.

TR (transitional; type 7) days are defined as days in which one weather type yields to another, based on large shifts in air pressure, dew point, and wind speed over the course of the day (Kalkstein et al. 1996; Sheridan 2002, 2003; Bower et al. 2007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makra, L., Puskás, J., Matyasovszky, I. et al. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications. Int J Biometeorol 59, 1269–1289 (2015). https://doi.org/10.1007/s00484-014-0938-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-014-0938-x

Keywords

Navigation