Skip to main content

Advertisement

Log in

The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Sunlight may be related to cognitive function through vitamin D metabolism or circadian rhythm regulation. The analysis presented here sought to test whether ground and satellite measures of solar radiation are associated with cognitive decline. The study used a 15-year residential history merged with satellite and ground monitor data to determine sunlight (solar radiation) and air temperature exposure for a cohort of 19,896 cognitively intact black and white participants aged 45+ from the 48 contiguous United States. Exposures of 15, 10, 5, 2, and 1-year were used to predict cognitive status at the most recent assessment in logistic regression models; 1-year insolation and maximum temperatures were chosen as exposure measures. Solar radiation interacted with temperature, age, and gender in its relationships with incident cognitive impairment. After adjustment for covariates, the odds ratio (OR) of cognitive decline for solar radiation exposure below the median vs above the median in the 3rd tertile of maximum temperatures was 1.88 (95 % CI: 1.24, 2.85), that in the 2nd tertile was 1.33 (95 % CI: 1.09, 1.62), and that in the 1st tertile was 1.22 (95 % CI: 0.92, 1.60). We also found that participants under 60 years old had an OR = 1.63 (95 % CI: 1.20, 2.22), those 60–80 years old had an OR = 1.18 (95 % CI: 1.02, 1.36), and those over 80 years old had an OR = 1.05 (0.80, 1.37). Lastly, we found that males had an OR = 1.43 (95 % CI: 1.22, 1.69), and females had an OR = 1.02 (0.87, 1.20). We found that lower levels of solar radiation were associated with increased odds of incident cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alperovitch A, Lacombe JM, Hanon O, Dartigues JF, Ritchie K, Ducimetiere P, Tzourio C (2009) Relationship between blood pressure and outdoor temperature in a large sample of elderly individuals: the Three-City study. Arch Intern Med 169(1):75–80. doi:10.1001/archinternmed.2008.512

    Article  Google Scholar 

  • Barnard K, Colon-Emeric C (2010) Extraskeletal effects of vitamin D in older adults: cardiovascular disease, mortality, mood, and cognition. Am J Geriatr Pharmacother 8(1):4–33. doi:10.1016/j.amjopharm.2010.02.004

    Article  CAS  Google Scholar 

  • Barnett AG, Sans S, Salomaa V, Kuulasmaa K, Dobson AJ, Project WM (2007) The effect of temperature on systolic blood pressure. Blood Press Monit 12(3):195–203. doi:10.1097/MBP.0b013e3280b083f4

    Article  Google Scholar 

  • Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24(2):190–202

    Article  Google Scholar 

  • Block ML, Calderon-Garciduenas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516. doi:10.1016/j.tins.2009.05.009

    Article  CAS  Google Scholar 

  • Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM (2001) Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 21(1):98–108

    CAS  Google Scholar 

  • Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, Villarreal-Calderon R, Osnaya N, Stone I, Garcia R, Brooks DM, Gonzalez-Maciel A, Reynoso-Robles R, Delgado-Chavez R, Reed W (2008) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36(2):289–310. doi:10.1177/0192623307313011

    Article  CAS  Google Scholar 

  • Callahan CM, Hendrie HC, Tierney WM (1995) Documentation and evaluation of cognitive impairment in elderly primary care patients. Ann Intern Med 122(6):422–429

    Article  CAS  Google Scholar 

  • Callahan CM, Unverzagt FW, Hui SL, Perkins AJ, Hendrie HC (2002) Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care 40(9):771–781. doi:10.1097/01.MLR.0000024610.33213.C8

    Article  Google Scholar 

  • Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460(2):213–217. doi:10.1016/j.abb.2006.12.017

    Article  CAS  Google Scholar 

  • Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29(1):21–30. doi:10.1016/j.jchemneu.2004.08.006

    Article  CAS  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  Google Scholar 

  • Gloth FM 3rd, Alam W, Hollis B (1999) Vitamin D vs broad spectrum phototherapy in the treatment of seasonal affective disorder. J Nutr Health Aging 3(1):5–7

    Google Scholar 

  • Graham SE, McCurdy T (2004) Developing meaningful cohorts for human exposure models. J Expo Anal Environ Epidemiol 14:23–43

    Article  Google Scholar 

  • Golden RN, Gaynes BN, Ekstrom RD, Hamer RM, Jacobsen FM, Suppes T, Wisner KL, Nemeroff CB (2005) The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence. Am J Psychiatry 162(4):656–662. doi:10.1176/appi.ajp.162.4.656

    Article  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. doi:10.1056/NEJMra070553

    Article  CAS  Google Scholar 

  • Howard VJ, Cushman M, Pulley L, Gomez CR, Go RC, Prineas RJ, Graham A, Moy CS, Howard G (2005) The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology 25(3):135–143. doi:10.1159/000086678

    Article  Google Scholar 

  • Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (2001) Protective effects of 1 alpha,25-(OH)(2)D(3) against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40(6):761–771

    Article  CAS  Google Scholar 

  • Jakovljevic M, Muck-Seler D, Pivac N, Ljubicic D, Bujas M, Dodig G (1997) Seasonal influence on platelet 5-HT levels in patients with recurrent major depression and schizophrenia. Biol Psychiatry 41(10):1028–1034

    Article  CAS  Google Scholar 

  • Keller MC, Fredrickson BL, Ybarra O, Cote S, Johnson K, Mikels J, Conway A, Wager T (2005) A warm heart and a clear head. The contingent effects of weather on mood and cognition. Psychol Sci 16(9):724–731. doi:10.1111/j.1467-9280.2005.01602.x

    Article  Google Scholar 

  • Kent ST, McClure LA, Crosson WL, Arnett DK, Wadley VG, Sathiakumar N (2009) Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study. Environ Health 8:34. doi:10.1186/1476-069X-8-34

    Article  Google Scholar 

  • Kent ST, Howard G, Prineas RJ, Crosson WL, McClure LA (2011) The association of remotely-sensed outdoor temperature with blood pressure levels in REGARDS: a cross-sectional study of a large, national cohort of African-American and white participants. Environ Health 10(1):7. doi:10.1186/1476-069X-10-7

    Article  Google Scholar 

  • Khait VD, Huang YY, Malone KM, Oquendo M, Brodsky B, Sher L, Mann JJ (2002) Is there circannual variation of human platelet 5-HT(2A) binding in depression? J Affect Disord 71(1–3):249–258

    Article  CAS  Google Scholar 

  • Leonard BE, Myint A (2006) Changes in the immune system in depression and dementia: causal or coincidental effects? Dialogues Clin Neurosci 8(2):163–174

    Google Scholar 

  • Leppamaki S, Partonen T, Vakkuri O, Lonnqvist J, Partinen M, Laudon M (2003) Effect of controlled-release melatonin on sleep quality, mood, and quality of life in subjects with seasonal or weather-associated changes in mood and behaviour. Eur Neuropsychopharmacol 13(3):137–145

    Article  CAS  Google Scholar 

  • Melchior LA, Huba GJ, Brown VB, Reback CJ (1993) A short depression index for women. Educ Psychol Meas 53(4):1117–1125

    Article  Google Scholar 

  • Miller AL (2005) Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern Med Rev 10(1):5–13

    Google Scholar 

  • NOAA/NCEP/EMC (2010) NLDAS Homepage. http://www.emc.ncep.noaa.gov/mmb/nldas/. Accessed April 22, 2010

  • Oudshoorn C, Mattace-Raso FU, van der Velde N, Colin EM, van der Cammen TJ (2008) Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 25(6):539–543. doi:10.1159/000134382

    Article  CAS  Google Scholar 

  • Reusch J, Ackermann H, Badenhoop K (2009) Cyclic changes of vitamin D and PTH are primarily regulated by solar radiation: 5-year analysis of a German (50 degrees N) population. Horm Metab Res 41(5):402–407. doi:10.1055/s-0028-1128131

    Article  CAS  Google Scholar 

  • Rosen CJ (2011) Clinical practice. Vitamin D insufficiency. N Engl J Med 364(3):248–254. doi:10.1056/NEJMcp1009570

    Article  CAS  Google Scholar 

  • Rostand SG (1997) Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 30(2 Pt 1):150–156

    Article  CAS  Google Scholar 

  • Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R (2006a) Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behavioral and brain functions : BBF 2:15. doi: 10.1186/1744-9081-2-15

  • Srinivasan V, Smits M, Spence W, Lowe AD, Kayumov L, Pandi-Perumal SR, Parry B, Cardinali DP (2006b) Melatonin in mood disorders. World J Biol Psychiatry 7(3):138–151. doi:10.1080/15622970600571822

    Article  Google Scholar 

  • Tolppanen AM, Sayers A, Fraser WD, Lawlor DA (2012) Association of serum 25-hydroxyvitamin D3 and D2 with academic performance in childhood: findings from a prospective birth cohort. J Epidemiol Community Health. doi:10.1136/jech-2011-200114

  • Turner PL, Mainster MA (2008) Circadian photoreception: ageing and the eye’s important role in systemic health. Br J Ophthalmol 92(11):1439–1444. doi:10.1136/bjo.2008.141747

    Article  CAS  Google Scholar 

  • Van Someren EJ, Riemersma-Van Der Lek RF (2007) Live to the rhythm, slave to the rhythm. Sleep Med Rev 11(6):465–484. doi:10.1016/j.smrv.2007.07.003

    Article  Google Scholar 

  • Wadley VG, McClure LA, Howard VJ, Unverzagt FW, Go RC, Moy CS, Crowther MR, Gomez CR, Howard G (2007) Cognitive status, stroke symptom reports, and modifiable risk factors among individuals with no diagnosis of stroke or transient ischemic attack in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Stroke 38(4):1143–1147. doi:10.1161/01.STR.0000259676.75552.38

    Article  Google Scholar 

  • Ware J Jr, Kosinski M, Keller SD (1996) A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care 34(3):220–233

    Article  Google Scholar 

  • Webb AR (2006) Who, what, where and when-influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92(1):17–25. doi:10.1016/j.pbiomolbio.2006.02.004

    Article  CAS  Google Scholar 

  • Wilkins CH, Birge SJ, Sheline YI, Morris JC (2009) Vitamin D deficiency is associated with worse cognitive performance and lower bone density in older African Americans. J Natl Med Assoc 101(4):349–354

    Google Scholar 

  • Winkler D, Pjrek E, Iwaki R, Kasper S (2006) Treatment of seasonal affective disorder. Expert Rev Neurother 6(7):1039–1048. doi:10.1586/14737175.6.7.1039

    Article  CAS  Google Scholar 

  • Wong A (2008) Incident solar radiation and coronary heart disease mortality rates in Europe. Eur J Epidemiol 23(9):609–614. doi:10.1007/s10654-008-9274-y

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at http://www.regardsstudy.org. This research project is supported by a cooperative agreement U01 NS041588 from the National Institute of Neurological Disorders and Stroke. Additional funding, data, data processing, and consultation were provided by an investigator-initiated grant from National Aeronautics and Space Administration (grant# NNX09AV81G). The NLDAS hourly data used in this study were acquired as part of the mission of National Aeronautics and Space Administration’s Earth Science Division and archived and distributed by the Goddard Earth Sciences Data and Information Services Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shia T. Kent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, S.T., Kabagambe, E.K., Wadley, V.G. et al. The relationship between long-term sunlight radiation and cognitive decline in the REGARDS cohort study. Int J Biometeorol 58, 361–370 (2014). https://doi.org/10.1007/s00484-013-0631-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-013-0631-5

Keywords

Navigation