Skip to main content
Log in

Testing the hypothesis on the relationship between aerodynamic roughness length and albedo using vegetation structure parameters

  • Short Communication
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Surface albedo (α) and aerodynamic roughness length (z 0), which partition surface net radiation into energy fluxes, are critical land surface properties for biosphere–atmosphere interactions and climate variability. Previous studies suggested that canopy structure parameters influence both α and z 0; however, no field data have been reported to quantify their relationships. Here, we hypothesize that a functional relationship between α and z 0 exists for a vegetated surface, since both land surface parameters can be conceptually related to the characteristics of canopy structure. We test this hypothesis by using the observed data collected from 50 site-years of field measurements from sites worldwide covering various vegetated surfaces. On the basis of these data, a negative linear relationship between α and log(z 0) was found, which is related to the canopy structural parameter. We believe that our finding is a big step toward the estimation of z 0 with high accuracy. This can be used, for example, in the parameterization of land properties and the observation of z 0 using satellite remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull Am Meteorol Soc 82:2415–2434

    Article  Google Scholar 

  • Berbigier P, Bonnefond J-M, Mellmann P (2001) CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agric For Meteorol 108:183–197

    Article  Google Scholar 

  • Beringer J, Chapin FS III, Thompson CC, McGuire AD (2005) Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agric For Meteorol 131:143–161

    Article  Google Scholar 

  • Betts AK, Desjardins RL, Worth D (2007) Impact of agriculture, forest and cloud feedback on the surface energy budget in BOREAS. Agric For Meteor 142:156–169

    Article  Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    Article  CAS  Google Scholar 

  • Bonan GB (2002) Ecological climatology. Cambridge University Press, New York

    Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere; theory, history, and application. Kluwer, Dordrecht

    Google Scholar 

  • Campbell GS (1973) An introduction to environmental biophysics. Springer, New York

    Google Scholar 

  • Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at Fluxnet-Canada forest sites. Agric For Meteorol 140:257–268

    Article  Google Scholar 

  • Choudhury BJ, Monteith JL (1988) A four-layer model for the heat budget of homogeneous land surfaces. Q J R Meteorol Soc 114:373–398

    Article  Google Scholar 

  • Cook BD, Davis KJ, Wang W, Desai A, Berger BW, Teclaw RM, Martin JG, Bolstad PV, Bakwin PS, Yi C, Heilman W (2004) Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA. Agric For Meteorol 126:271–295

    Article  Google Scholar 

  • Coulter RL, Pekour MS, Cook DR, Klazura GE, Martin TJ, Lucas JD (2006) Surface energy and carbon dioxide fluxes above different vegetation types within ABLE. Agric For Meteorol 136:147–158

    Article  Google Scholar 

  • Dolman AJ, Moors EJ, Elbers JA (2002) The carbon uptake of a mid latitude pine forest growing on sandy soil. Agric For Meteorol 111:157–170

    Article  Google Scholar 

  • Eagleson PS (2002) Ecohydrology: Darwinian expression of vegetation form and function. Cambridge University Press, Cambridge

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetic and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Garratt JR (1994) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge

  • Green DG, Klomp N, Rimmington G, Sadedin S (2006) Complexity in landscape ecology. Springer, Netherlands

    Google Scholar 

  • Grünwald T, Bernhofer C (2007) A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus Ser B 59:387–396

    Article  Google Scholar 

  • Gu L, Meyers T, Pallardy SG, Hanson PJ, Yang B, Heuer M, Hosman KP, Riggs JS, Sluss D, Wullschleger SD (2006) Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J Geophys Res 111:D16102. doi:10.1029/2006JD007161

    Article  Google Scholar 

  • Hahmann AN, Dickinson RE (1997) RCCM2-BATS models over tropical South America: application to tropical deforestation. J Climate 10:1944–1964

    Article  Google Scholar 

  • Hattori S, Tamai K, Abe T (1993) Effects of soil moisture and vapor pressure deficit on evapotranspiration in a hinoki plantation. J Jpn For Soc 75:216–224 (in Japanese with English summary)

    Google Scholar 

  • Henderson-Sellers A, Dickinson RE, Durbidge TB, Kennedy PJ, McGuffie K, Pitman AJ (1993) Tropical deforestation: modeling local- to regional-scale climate change. J Geophys Res 98:7289–7315

    Article  Google Scholar 

  • Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494

    Article  CAS  Google Scholar 

  • Hollinger DY, Ollinger SV, Richardson AD, Meyers TP, Dail DB, Martin ME, Scott NA, Arkebauer TJ, Baldocchi DD, Clark KL, Curtis PS, Davis KJ, Desai AR, Dragoni D, Goulden ML, Gu L, Katul GG, Pallardy SG, Paw UKT, Schmid HP, Stoy PC, Suyker AE, Verma SB (2010) Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob Change Biol 16:696–710

    Article  Google Scholar 

  • Jarvis PG, James GB, Landsberg JJ (1976) Coniferous forest. In: Monteith JL (ed) Vegetation and the atmosphere, vol 2. Academic, London, pp 171–240

  • Jasinski MF, Borak J, Crago R (2005) Bulk surface momentum parameters for satellite-derived vegetation fields. Agric For Meteorol 133:55–68

    Article  Google Scholar 

  • Kanae S, Oki T, Musiake K (2001) Impact of deforestation on regional precipitation over the Indochina peninsula. J Hydrometeorol 2:51–70

    Article  Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243

    Article  Google Scholar 

  • Knohl A, Schulze E-D, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 250-years-old deciduous forest in Central Germany. Agric For Meteorol 118:151–167

    Article  Google Scholar 

  • Laurila T, Soegaard H, Lloyd CR, Aurela M, Tuovinen J-P, Nordstroem C (2001) Seasonal variations of net CO2 exchange in European Arctic ecosystems. Theor Appl Climatol 70:183–201

    Article  Google Scholar 

  • Lean J, Warrilow DA (1989) Simulation of the regional climatic impact of Amazon deforestation. Nature 342:411–413

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. Appl Meteorol 8:828–832

    Article  Google Scholar 

  • Leuning R, Raupach MR, Coppin PA, Cleugh HA, Isaac P, Denmead OT, Dunin FX, Zegelin S, Hacker J (2004) Spatial and temporal variations in fluxes of energy, water vapour and carbon dioxide during OASIS 1994 and 1995. Boundary-Layer Meteorol 110:3–38

    Article  Google Scholar 

  • Li SG, Harazono Y, Oikawa T, Zhao HL, He ZY, Chang XL (2000) Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agric For Meteor 102:125–137

    Article  Google Scholar 

  • Mahrt L, Ek M (1993) Spatial variability of turbulent fluxes and roughness lengths in HAPEX-MOBILHY. Boundary-Layer Meteorol 65:381–400

    Google Scholar 

  • Martano P (2000) Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J Appl Meteorol 39:708–715

    Article  Google Scholar 

  • Mihailović DT, Kallos G (1997) Sensitivity study of a coupled soil-vegetation boundary-layer scheme for use in atmospheric modeling. Boundary-Layer Meteorol 82:283–315

    Article  Google Scholar 

  • Mölder M, Lindroth A (1999) Thermal roughness length of a boreal forest. Agric For Meteorol 98–99:659–670

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (2008) Principles of environmental physics, 3rd edn. Academic, San Diego

    Google Scholar 

  • Nakai T, Sumida A, Daikoku K, Matsumoto K, van der Molen MK, Kodama Y, Kononov AV, Maximov TC, Dolman AJ, Yabuki H, Hara T, Ohta T (2008) Parameterization of aerodynamic roughness over boreal, cool- and warm-temperate forests. Agric For Meteor 148:1916–1925

    Article  Google Scholar 

  • Ogunjemiyo S, Parker G, Roberts D (2005) Reflections in bumpy terrain: implications of canopy surface variations for the radiation balance of vegetation. IEEE Geosci Remote Sens Lett 1:90–93

    Article  Google Scholar 

  • Ohtani Y, Mizoguchi Y, Watanabe T, Yasuda Y, Okano M (2001) Seasonal change of CO2 flux above an evergreen needle leaf forest in temperate region, Fujiyoshida, Japan. Proc. international workshop for advanced flux network and flux evaluation. (eds. Fujinuma Y, Takada M, Tashiro K, Nagahama T, Abe M, Hagiwara T, Zeng J) Center for Global Environmental Research, Tukuba, pp 129–132

  • Oke TR (1987) Boundary layer climates, 2nd edn. Halsted, London

    Google Scholar 

  • Ollinger SV, Richardson AD, Martin ME, Hollinger DY, Frolking SE, Reich PB, Plourde LC, Katul GG, Munger JW, Oren R, Smith M-L, Paw UKT, Bolstad PV, Cook BD, Day MC, Martin TA, Monson RK, Schmid HP (2008) Canopy nitrogen, carbon assimilation, and albedo in temperature and boreal forests: Functional relations and potential climate feedbacks. Proc Natl Acad Sci USA 105:19336–19341

    Article  CAS  Google Scholar 

  • Parker GG (1995) Structure and microclimate of forest canopies. In: Lowman MD, Nadkarni NM (eds) Forest canopies. .Academic, San Diego, pp 73–106

  • Parker GG, Russ ME (2004) The canopy surface and stand development: assessing forest canopy structure and complexity with near-surface altimetry. Agric For Meteor 189:307–315

    Google Scholar 

  • Price CA, Enquist BJ, Savage VM (2007) A general model for allometric covariation in botanical form and function. Proc Natl Acad Sci USA 104:13204–13209

    Article  CAS  Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-displacement as a function of canopy height and area index. Boundary-Layer Meteorol 71:211–216

    Article  Google Scholar 

  • Saunders R (1990) The determination of broad band surface albedo from AVHRR visible and near-infrared radiance. Int J Remote Sens 11:49–67

    Article  Google Scholar 

  • Schaudt KJ, Dickinson RE (2000) An approach to deriving roughness length and zero-plane displacement height from satellite data, prototyped with BOREAS data. Agric For Meteorol 104:143–155

    Article  Google Scholar 

  • Schmid HP, Grimmond SB, Cropley F, Offerle B, Su H-B (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103:357–374

    Article  Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int J Remote Sens 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509

    Article  CAS  Google Scholar 

  • Shuttleworth WJ, Leuning R, Black TA, Grace J, Jarvis PG, Roberts J, Jones HG (1989) Micrometeorology of temperate and tropical forest. Philos Trans R Soc Lond B 324:299–334

    Article  Google Scholar 

  • Stanhill G (1970) Some results of helicopter measurements of albedo. Sol Energy 13:59–66

    Article  Google Scholar 

  • Suni T, Rinne J, Reissell A, Altimir N, Keronen P, Rannik U, Maso MD, Kulmala M, Vesala T (2003) Long-term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996–2001. Boreal Environ Res 8:287–301

    CAS  Google Scholar 

  • Thomas C, Foken T (2007) Organized motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Boundary-Layer Meteorol 122:123–147

    Article  Google Scholar 

  • Thomas SC, Winner WE (2000) Leaf area index of an old-growth Douglas-fir forest estimated from direct structural measurements in the canopy. Can J For Res 30:1922–1930

    Article  Google Scholar 

  • Thompson C, Beringer J, Chapin FS III, McGuire AD (2004) Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest. J Veg Sci 15:397–406

    Article  Google Scholar 

  • Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain; Part.1 Canopy and local effects. Agric For Meteorol 119:1–21

    Article  Google Scholar 

  • Wang J, Bastiaanssen WGM, Ma Y, Pelgrum H (1998) Aggregation of land surface parameters in the oasis-desert systems of north-west China. Hydrol Process 12:2133–2147

    Article  Google Scholar 

  • Wooding RA, Bradley EF, Marshall JK (1973) Drag due to regular arrays of roughness elements of varying geometry. Boundary-Layer Meteorol 5:285–308

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Zeng X, Dai Y, Yang Z-L, Schaaf CB, Gao F, Jin Y, Strahler A (2003) Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J Geophys Res 108:4488. doi:10.1029/2002JD003326

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers, whose comments were useful for revising this manuscript. This work was supported by JSPS KAKENHI, Grants-in-Aid for Scientific Research on Innovative Areas (22119009) and (S)(19106008), and Innovative program of climate change projection for the 21st Century from The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeil Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J., Miyazaki, S., Yeh, P.JF. et al. Testing the hypothesis on the relationship between aerodynamic roughness length and albedo using vegetation structure parameters. Int J Biometeorol 56, 411–418 (2012). https://doi.org/10.1007/s00484-011-0445-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0445-2

Keywords

Navigation