Skip to main content

Advertisement

Log in

Spatial and temporal modeling of daily pollen concentrations

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Accurate assessments of pollen counts are valuable to allergy sufferers, the medical industry, and health researchers; however, monitoring stations do not exist in most areas. In addition, the degree of spatial reliability provided by the limited number of monitoring stations is poorly understood. We developed and compared spatial models to estimate pollen concentrations in locations without monitoring stations. Daily Acer, Quercus, and overall tree, grass, and weed pollen counts, in grains/m3, were obtained from 14 aeroallergen monitoring stations located in the northeastern and mid-Atlantic region of the United States from 2003 to 2006. Pollen counts were spatially interpolated using ordinary kriging. Mixed effects and generalized estimating equations incorporating daily and seasonal weather characteristics, pollen season characteristics and land-cover information were also developed to estimate daily pollen concentrations. We then compared observed values from a monitoring station to model estimates for that location. Observed counts and kriging estimates for tree pollen differed (p = 0.04), but not when peak periods were removed (p = 0.29). No differences between observed and kriging estimates of Acer (p = 0.46), Quercus (p = 0.24), grass (p = 0.31) or weed pollen (p = 0.29) were found. Estimates from longitudinal models also demonstrated good agreement with observed counts, except for the extremes of pollen distributions. Our results demonstrate that spatial interpolation techniques as well as regression methods incorporating both weather and land-cover characteristics can provide reliable estimates of daily pollen concentrations in areas where monitors do not exist for all but periods of extremely high pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AAAAI (American Acadamey of Allergy, Asthma & Immunology) (2010). National Allergy Bureau: Reading the Charts. http://www.aaaai.org/nab/index.cfm?p=reading_charts. Accessed 25 January 2010

  • Alba F, Nieto-Lugilde D, Comtois P, de la Guardia CD, De Linares C, Ruiz L (2006) Airborne-pollen map for Olea europaea L. in eastern Andalusia (Spain) using GIS: estimation models. Aerobiologia 22(2):109–118. doi:10.1007/s10453-006-9024-0

    Article  Google Scholar 

  • Antepara I, Fernandez JC, Gamboa P, Jauregui I, Miguel F (1995) Pollen allergy in the Bilbao area (European Atlantic seaboard climate) - pollination forecasting methods. Clin Exp Allergy 25(2):133–140

    Article  CAS  Google Scholar 

  • Branzi GP, Zanotti AL (1992) Estimate and mapping of the activity of airborne pollen sources. Aerobiologia 8(1):69–74

    Article  Google Scholar 

  • Cakmak S, Dales RE, Judek S, Coates F (2005) Does socio-demographic status influence the effect of pollens and molds on hospitalization for asthma? Results from a time-series study in 10 Canadian cities. Ann Epidemiol 15(3):214–218. doi:10.1016/j.annepidem.2004.06.001

    Article  Google Scholar 

  • Dales RE, Cakmak S, Judek S, Dann T, Coates F, Brook JR, Burnett RT (2004) Influence of outdoor aeroallergens on hospitalization for asthma in Canada. J Allergy Clin Immunol 113(2):303–306. doi:10.1016/j.jaci.2003.11.016

    Article  Google Scholar 

  • Emberlin J, Savage M, Jones S (1993) Annual variations in grass-pollen seasons in London 1961-1990 - trends and forecast models. Clin Exp Allergy 23(11):911–918

    Article  CAS  Google Scholar 

  • Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, Savage M (1999) Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin Exp Allergy 29(3):347–356

    Article  CAS  Google Scholar 

  • Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimaki A (2002) Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe. Int J Biometeorol 46(4):159–170. doi:10.1007/s00484-002-0139-x

    Article  CAS  Google Scholar 

  • Emberlin J, Smith M, Close R, Adams-Groom B (2007) Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996-2005. Int J Biometeorol 51(3):181–191. doi:10.1007/s00484-006-0059-2

    Article  Google Scholar 

  • Frenz DA (1999) Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann Allergy Asthma Immunol 83(5):341–347

    Article  CAS  Google Scholar 

  • Fuertes-Rodriguez CR, Gonzalez-Parrado Z, Vega-Maray AM, Valencia-Barrera RM, Fernandez-Gonzalez D (2007) Effect of air temperature on forecasting the start of Cupressaceae pollen type in Ponferrada (Leon, Spain). Ann Agric Environ Med 14(2):237–242

    Google Scholar 

  • Galan C, Carinanos P, Garcia-Mozo H, Alcazar P, Dominguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in South-West Andalusia, Spain. Int J Biometeorol 45(2):59–63

    Article  CAS  Google Scholar 

  • Garcia-Mozo H, Galan C, Gomez-Casero MT, Dominguez-Vilches E (2000) A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Cordoba (South West Spain). Grana 39(4):194–199

    Article  Google Scholar 

  • Garcia-Mozo H, Galan C, Jato V, Belmonte J, de la Guardia CD, Fernandez D, Gutierrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, Dominguez-Vilches E (2006a) Quercus pollen season dynamics in the Iberian Peninsula: Response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13(2):209–224

    Google Scholar 

  • Garcia-Mozo H, Galan C, Vazquez L (2006b) The reliability of geostatistic interpolation in olive field floral phenology. Aerobiologia 22(2):97–108. doi:10.1007/s10453-006-9026-y

    Article  Google Scholar 

  • Goldberg C, Buch H, Moseholm L, Weeke ER (1988) Airborne pollen records in Denmark, 1977-1986. Grana 27(3):209–217

    Article  Google Scholar 

  • Kuparinen A, Snall T, Vanska S, O'Hara RB (2007) The role of model selection in describing stochastic ecological processes. Oikos 116(6):966–974

    Article  Google Scholar 

  • Laaidi M (2001) Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol 45(1):1–7

    Article  CAS  Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80(2):107–138

    Article  Google Scholar 

  • Levetin E, Van de Water PK (2003) Pollen count forecasting. Immunology and Allergy Clinics of North America 23 (3):423-+. doi:10.1016/s0889-8561(03)00019-5

  • Lewis SA, Corden JM, Forster GE, Newlands M (2000) Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993-96. Clin Exp Allergy 30(12):1724–1732

    Article  CAS  Google Scholar 

  • Liebhold AM, Rossi RE, Kemp WP (1993) Geostatistics and geographic information-systems in applied insect ecology. Annu Rev Entomol 38:303–327

    Article  Google Scholar 

  • Nathan R, Sapir N, Trakhtenbrot A, Katul GG, Bohrer G, Otte M, Avissar R, Soons MB, Horn HS, Wikelski M, Levin SA (2005) Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico? Divers Distrib 11(2):131–137. doi:10.1111/j.1366-9516.2005.00146.x

    Article  Google Scholar 

  • Ranta H, Sokol C, Hicks S, Heino S, Kubin E (2008) How do airborne and deposition pollen samplers reflect the atmospheric dispersal of different pollen types? An example from northern Finland. Grana 47(4):285–296. doi:10.1080/00173130802457230

    Article  Google Scholar 

  • Robertson GP (1987) Geostatistics in ecology - interpolating with known variance. Ecology 68(3):744–748

    Article  Google Scholar 

  • Smith M, Emberlin J (2005) Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy 35(10):1400–1406

    Article  CAS  Google Scholar 

  • Smith M, Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50(4):233–242

    Article  Google Scholar 

  • Stach A, Emberlin J, Smith M, Adams-Groom B, Myszkowska D (2008a) Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznan and Krakow) and the United Kingdom (Worcester and London). Int J Biometeorol 52(4):311–321. doi:10.1007/s00484-007-0127-2

    Article  CAS  Google Scholar 

  • Stach A, Smith M, Baena JCP, Emberlin J (2008b) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environ Exp Bot 62(3):323–332. doi:10.1016/j.envexpbot.2007.10.005

    Article  Google Scholar 

  • Valencia-Barrera RM, Comtois P, Fernandez-Gonzalez D (2002) Bioclimatic indices as a tool in pollen forecasting. Int J Biometeorol 46(4):171–175. doi:10.1007/s00484-002-0138-y

    Article  Google Scholar 

  • Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. John Wiley & Sons, Inc, Hoboken, NJ

    Book  Google Scholar 

  • Weber RW (2003) Meteorologic variables in aerobiology. Immunology and Allergy Clinics of North America 23 (3):411-+. doi:10.1016/s0889-8561(03)00062-6

Download references

Acknowledgements

We thank the National Allergy Bureau, and specifically Jerome Schultz, for providing daily ambient pollen measurements used in this study.

Ethical standards

This research was conducted without human or animal subjects and did not violate any legal or ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curt T. DellaValle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DellaValle, C.T., Triche, E.W. & Bell, M.L. Spatial and temporal modeling of daily pollen concentrations. Int J Biometeorol 56, 183–194 (2012). https://doi.org/10.1007/s00484-011-0412-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0412-y

Keywords

Navigation