Skip to main content
Log in

Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source–receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees (Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs (Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89–97% of annual counts of the highly allergenous Olea originates from extra-regional sources in southern Iberia and northern Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5a–c
Fig. 6a–f
Fig. 7
Fig. 8a–i

Similar content being viewed by others

References

  • Alonso-Pérez S, Cuevas E, Querol X, Viana M, Guerra JC (2007) Impact of the Saharan dust outbreaks on the ambient levels of total suspended particles (TSP) in the marine boundary layer (MBL) of the subtropical eastern North Atlantic ocean. Atmos Environ 41:9468. doi:10.1016/j.atmosenv.2007.08.049

    Article  Google Scholar 

  • Apadula F, Gotti A, Pigini A, Longhetto A, Rocchetti F, Cassardo C, Ferrarese S, Forza R (2003) Localization of source and sink regions of carbon dioxide through the method of the synoptic air trajectory statistics. Atmos Environ 37:3757–3770

    Article  CAS  Google Scholar 

  • Arco Aguilar del MJ (Director) et al (2006) Mapa de Vegetación de Canarias. Universidad de La Laguna. Departamento Biología Vegetal. Grafcan Ediciones. Santa Cruz de Tenerife

  • Aylor DE (2002) Settling speed of corn (Zea mays) pollen. J Aerosol Sci 33:1601–1607

    Article  CAS  Google Scholar 

  • Begum BA, Kim E, Jeong C, Lee D, Hopke PK (2005) Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos Environ 39:3719–3724

    Article  Google Scholar 

  • Belmonte J, Roure JM (1991) Characteristics of the aeropollen dynamics at several localities in Spain. Grana 30:364–372

    Article  Google Scholar 

  • Belmonte J, Vendrell M, Roure JM, Vidal J, Botey J, Cadahía A (2000) Levels of Ambrosia pollen in the atmospheric spetra of catalan aerobiological stations. Aerobiologia 16:93–99

    Article  Google Scholar 

  • Belmonte J, Alarcón M, Avila A, Scialabba E, Pino D (2008a) Long-range transport of beech (Fagus sylvatica L.) pollen to Catalonia (north-eastern Spain). Int J Biometeorol 52:675–687. doi:10.1007/s00484-008-0160-9

    Article  CAS  Google Scholar 

  • Belmonte J, Puigdemunt R, Cuevas E, Alonso S, González R, Poza P, Grau F (2008b) Eolo_PAT project: Aerobiology and respiratory allergies in Santa Cruz de Tenerife since 2004. Allergy 63(Suppl 88):498–498

    Google Scholar 

  • Bergametti G, Gomes L, Coude-Gaussen G, Rognon P, Lecoustumer MN (1989) African dust observerd over Canary Islands—source-regions identification and transport pattern for some summer situations. J Geophys Res-Atmos 94:14855–14864

    Article  Google Scholar 

  • Bourgeois JC (2000) Seasonal and interannual pollen variability in snow layers of arctic ice caps. Rev Palaeobot Palynol 108:17–36

    Article  Google Scholar 

  • Bousquet J, Khaltaev N, Cruz AA et al (2008) Allergenic rhinitis and its impact on asthma (ARIA) 2008 Update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy 63(Suppl. 86):8–160

    Google Scholar 

  • Brown JKM, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  Google Scholar 

  • Burczyck J, DiFazio SP, Adans WT (2004) Gene flow in forest trees: how far do genes really travel? For Genet 11:1–14

    Google Scholar 

  • Cabezudo B, Recio M, SanchezLaulhe JM, Trigo MD, Toro FJ, Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmos Environ 31:3323–3328

    Article  CAS  Google Scholar 

  • Calleja M, Rossignol-Strick M, Duzer D (1993) Atmospheric pollen content off West Africa. Rev Palaeobot Palynol 79:335–368

    Article  Google Scholar 

  • Cariñanos P, Galán C, Alcázar P, Domínguez E (2004) Analysis of the particles transported with dust-clouds reaching Córdoba, southwestern Spain. Arch Environ Contam Toxicol 46:141–146

    Google Scholar 

  • Cecchi L, Morabito M, Paola Domeneghetti M, Crisci A, Onorari M, Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immun 96:86–91

    Article  Google Scholar 

  • Charco J (1999) El bosque mediterráneo en el Norte de África. Biodiversidad y lucha contra la desertificación. Agencia Española de Cooperación Internacional, Madrid

    Google Scholar 

  • Coudé-Gaussen G, Rognon P, Bergametti G, Gomes L, Strauss B, Gros JM, Leucoustumer MN (1987) Saharan dust on Fuerteventura Island (Canaries)-chemical and mineralogical characteristics, air-mass trajectories, and probable sources. J Geophys Res-Atmos 92:9753–9771

    Article  Google Scholar 

  • Cuevas E (1996) Estudio del Comportamiento del Ozono Troposférico en el Observatorio de Izaña (Tenerife) y su Relación con la Dinámica Atmosférica. Memoria de Tesis Doctoral, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, available (in Spanish) in http://www.ucm.es/BUCM/tesis/19911996/X/1/X1023101.pdf, ISBAN 84-669-0399-2

  • Díaz AM, Díaz JP, Exposito FJ, Hernández-Leal PA, Savoie D, Querol X (2006) Air masses and aerosols chemical components in the free troposphere at the Subtropical Northeast Atlantic Region. J Atmos Chem 53:63–90

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY website. NOAA Air Resources Laboratory, Silver Spring, http://www.arl.noaa.gov/ready/hysplit4.html

    Google Scholar 

  • Ellstrand NC (1992) Gene flow by pollen—implications for plant conservation genetics. Oikos 63:77–86

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant-populations. Heredity 72:250–259

    Article  Google Scholar 

  • Escudero M, Stein A, Draxler RR, Querol X, Alastuey A, Castillo S, Àvila A (2006) Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model. J Geophys Res 111:D06210, doi:10.1029/2005JD006395

  • Estrella N, Menzel A, Krämer U, Behrendt H (2006) Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol 54:49–59

    Article  Google Scholar 

  • Font I (1956) El Tiempo Atmosférico de las Islas Canarias. Servicio Meteorológico Nacional (INM), Serie A, No. 26

  • Franzen L (1989) A dustfall episode on the Swedish west-coast, October 1987. Geogr Ann Ser A 71:263–267

    Article  Google Scholar 

  • Franzen L, Hjelmroos M (1988) A coloured snow episode on the Swedish west coast, January 1987. A quantitative study of air borne particles. Geogr Ann Ser A 70:235–243

    Article  Google Scholar 

  • Franzen L, Hjelmroos M, Kallberg P, Brorstromlunden E, Juntto S, Savolainen AL (1994) The yellow-snow episode of northern Fennoscandia, March-1991-a case-study of long-distance transport of soil, pollen and stable organic-compounds. Atmos Environ 28:3587–3604

    Article  CAS  Google Scholar 

  • Galán Soldevilla C, Cariñanos González P, Alcázar Teno P, Domínguez Vilches E (2007) Manual de Calidad y Gestión de la Red Española de Aerobiología. Servicio de Publicaciones. Universidad de Córdoba

  • Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–480

    Article  Google Scholar 

  • Gassmann MI, Pérez CF (2006) Trajectories associated to regional and extra-regional pollen transport in the Southeast of Buenos Aires Province, Mar Del Plata (Argentina). Int J Biometeorol 50:280. doi:10.1007/s00484-005-0021-8

    Article  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth-Sci Rev 56:179–204

    Article  CAS  Google Scholar 

  • Guerzoni S, Chester R (1996) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht

    Google Scholar 

  • Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477

    Article  Google Scholar 

  • Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: Long range transport of dust in the atmosphere and its implications for global public and ecosystems health. Glob Change Human Health 2:20–33

    Article  Google Scholar 

  • Hart MA, de Dear R, Beggs PJ (2007) A synoptic climatology of pollen concentrations during the six warmest months in Sydney, Australia. Int J Biometeorol 51:209–220

    Article  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Hoh E, Hites RA (2004) Sources of toxaphene and other organochlorine pesticides in North America as determined by air measurements and potential source contribution function analyses. Environ Sci Technol 38:4187–4194

    Article  CAS  Google Scholar 

  • Hooghiemstra H, Lezine AM, Leroy SAG, Dupont L, Marret F (2006) Late quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting. Quatern Int 148:29–44

    Article  Google Scholar 

  • Kasprzyk I (2008) Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland) Evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int J Biometeorol 52:341–351. doi:10.1007/s00484-007-0129

    Article  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  Google Scholar 

  • Kellogg CA, Griffin DW, Garrison VH, Peak KK, Royall N, Smith RR, Shinn EA (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20:99–110

    Article  Google Scholar 

  • Lewis WH, Vinay P, Zenger VE (1983) Airborne and Allergenic pollen of North America. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Mabberley DJ (1987) The plant-book: a portable dictionary of the higher plants. Press Syndicate of the University of Cambridge, New York

    Google Scholar 

  • Moulin C, Lambert CE, Dulac F, Dayan U (1997) Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387:691–694

    Article  CAS  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273

    Article  Google Scholar 

  • Nilsson S, Praglowski J (1992) Erdtman’s handbook of palynology, 2nd edn. Munksgaard, Copenhagen

  • Polissar AV, Hopke PK, Harris JM (2001) Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ Sci Technol 35:4214–4226

    Article  CAS  Google Scholar 

  • Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense african dust event in the Eastern Mediterranean. Environ Health Perspect 116:292–296

    Article  Google Scholar 

  • Prospero JM, Barett K, Churcha T, Dentener F, Duce RA, Galloway JN, Levy H II, Moody J, Quinn P (1996) Atmospheric deposition of nutrients to the North Atlantic Basin. Biogeochemistry 35:27–73

    Article  CAS  Google Scholar 

  • Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19

    Google Scholar 

  • Rivas Martínez S (1987) Memoria del Mapa de Series de Vegetación de España. Publicación ICONA, Madrid

    Google Scholar 

  • Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Master Thesis, Universidad de La Laguna

  • Rodriguez S, Torres C, Guerra JC, Cuevas E (2004) Transport Pathways to Ozone to Marine and Free-Troposphere Sites in Tenerife, Canary Islands. Atmos Environ 38:4733–4747

    Article  CAS  Google Scholar 

  • Rodriguez S, Querol X, Alastuey A, de la Rosa J (2007) Atmospheric particulate matter and air quality in the Mediterranean: a review. Environ Chem Lett 5:1–7. doi:10.1007/s10311-006-0071-0

    Article  CAS  Google Scholar 

  • Rogers CA, Levetin E (1998) Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. Int J Biometeorol 42:65–72

    Article  Google Scholar 

  • Romero OE, Dupont L, Wyputta U, Jahns S, Wefer G (2003) Temporal variability of fluxes of eolian-transported freshwater diatoms, phytoliths, and pollen grains off Cape Blanc as reflection of land-atmosphere-ocean interactions in northwest Africa. J Geophys Res-Oceans 108(C5):22.1–22.12. doi:10.1029/2000JC000375/2003

    Article  Google Scholar 

  • Rousseau DD, Duzer D, Cambon GV, Jolly D, Poulsen U, Ferrier J, Schevin P, Gros R (2003) Long distance transport of pollen to Greenland. Geophys Res Lett 30:1765. doi:10.1029/2003GL017539

    Article  Google Scholar 

  • Rousseau DD, Schevin P, Duzer D, Cambon GV, Ferrier J, Jolly D, Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Rev Palaeobot Palynol 141:277–286. doi:10.1016/j.revpalbo.2006.05.001

    Article  Google Scholar 

  • Rousseau DD, Schevin P, Ferrier J, Jolly D, Andreasen T, Ascanius SE, Hendriksen SE, Poulsen U (2008) Long-distance pollen transport from North America to Greenland in spring. J Geophys Res-Biogeosci 113:G02013. doi: 10.1029/2007JG000456

  • Salvador P, Artiñano B, Alonso DG, Querol X, Alastuey A (2004) Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmos Environ 38:435–447

    Article  CAS  Google Scholar 

  • Schefinger H, Kaiser A (2007) Validation of trajectory statistical methods. Atmos Environ 41:8846–8856

    Article  Google Scholar 

  • Schmidt-Lebuhn AN, Seltmann P, Kessler M (2007) Consequences of the pollination system on genetic structure andpatterns of species distribution in the Andean genus Polylepis (Rosaceae): a comparative study. Plant Syst Evol 266:91103. doi:10.1007/s00606-007-0543-0

    Article  Google Scholar 

  • Seibert P, Kromp-Kolb H, Balterpensger U, Jost DT, Schwikowski M, Kasper A, Puxbaum H (1994) Trajectory analysis of aerosol measurements at high alpine sites. In: Borrel PM, Borrell P, Cvitas T, Seiler W (eds) Transport and transformation of pollutants in the troposphere. Academic, The Hague, pp 689–693

    Google Scholar 

  • Sharma CM, Khanduri VP (2007) Pollen-mediated gene flow in Himalayan Long Needle Pine (Pinus roxburghii Sargent). Aerobiologia 23:153–158. doi:10.1007/s10453-007-9056-0

    Article  Google Scholar 

  • Shinn EA, Griffin DW, Seba DB (2003) Atmospheric transport of mold spores in clouds of desert dust. Arch Environ Health 58:498–504

    Google Scholar 

  • Šikoparija B, Smith M, Skjøth CA, Radišić P, Milkovska S, Šimić S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53:263–272

    Article  Google Scholar 

  • Siljamo P, Sofiev M, Ranta H (2007) An approach to simulation of long-range atmospheric transport of natural allergens: an example of birch pollen. In: Borrego C, Norman A-L (eds) Air pollution modeling and its applications, vol XVII. Springer, Boston, pp 331–339

  • Siljamo P, Sofiev M, Severova E, Ranta H, Kukkonen J, Polevova S, Kubin E, Minin A (2008) Sources, impact and exchange of early-spring birch pollen in the Moscow region and Finland. Aerobiologia 24:211–230

    Article  Google Scholar 

  • Skjøth CA, Sommer J, Stach A, Smith M, Brandt J (2007) The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin Exp Allergy 37:1204–1212

    Article  Google Scholar 

  • Skjøth CA, Smith M, Brandt J, Emberlin J (2009) Are the birch trees in Southern England a source of pollen in North London? Int J Biometeorol 53:75–86

    Article  Google Scholar 

  • Smouse P, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation snalysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260. doi:10.1111/j.0014-3820.2001.tb01291

    CAS  Google Scholar 

  • Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimaki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50:392–402

    Article  CAS  Google Scholar 

  • Stach A, Smith M, Skjøth CA, Brandt J (2007) Examining Ambrosia pollen episodes at Poznan (Poland) using back-trajectory analysis. Int J Biometeorol 51:275–286

    Article  CAS  Google Scholar 

  • Stohl A (1996) Trajectory statistics-A new method to establish source-receptor relationships of air pollutants and its applications to the transport of particulate sulphate in Europe. Atmos Environ 30:579–587

    Article  CAS  Google Scholar 

  • Taylor DA (2002) Dust in the wind. Environ Health Perspect 110:A80–A87

    Google Scholar 

  • Torres CJ, Cuevas E, Guerra JC, Carreño V (2001) Caracterización de las masas de aire en la región subtropical. Proceedings of the V Symposio Nacional de Predicción. Instituto Nacional de Meteorología, Madrid, pp 10–13

    Google Scholar 

  • Van Campo M, Quet L (1982) Pollen and red dust transport from South to North of the Mediterranean area. C R Seances Acad Sci III 295:61–64

    Google Scholar 

  • Viana M, Querol X, Alastuey A, Cuevas E, Rodriguez S (2002) Influence of african dust on the levels of atmospheric particulates in the Canary Islands Air Quality Network. Atmos Environ 36:5861–5875

    Article  CAS  Google Scholar 

  • Viana M, Querol X, Alastuey A (2006) Chemical characterisation of PM episodes in NE Spain. Chemosphere 62:947–956

    Article  CAS  Google Scholar 

  • Waisel Y, Ganor E, Epshtein V, Stupp A, Eshel A (2008) Airborne pollen, spores, and dust across the East Mediterranean sea. Aerobiologia 24:125–131

    Article  Google Scholar 

  • Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24:938–039

    Article  Google Scholar 

  • White F (1983) The vegetation of Africa-a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO, Paris

    Google Scholar 

  • Wotawa G, Kröger H (1999) Testing the ability of trajectory statistics to reproduce emission inventories of air pollutants in cases of negligible measurement and transport errors. Atmos Environ 33:3037–3043

    Article  CAS  Google Scholar 

  • Wu PC, Tsai JC, Li FC, Lung SC, Su HJ (2004) Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos Environ 38:4879–4886

    Article  CAS  Google Scholar 

  • Wynn-Williams DD (1991) Aerobiology and colonization in Antarctica: the BIOTAS programme. Grana 30:380–393

    Article  Google Scholar 

  • Xie Y, Berkowitz CM (2007) The use of conditional probability functions and potential source contribution functions to identify source regions and advection pathways of hydrocarbon emissions in Houston, Texas. Atmos Environ 41:5831–5847

    Article  CAS  Google Scholar 

  • Yadav S, Chauhan MS, Sharma A (2007) Characterisation of bio-aerosols during dust storm period in N-NW India. Atmos Environ 41:6063–6073

    Article  CAS  Google Scholar 

  • Zhang WY, Arimoto R, An ZS (1997) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophys Res 102(D23):28041–28147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research received financial support from the Spanish government through the projects CGL2005-07543, CGL2009-11205, CGL2009-13188-01 and the “Subprograma MICINN-PTA” funded by the European Social Fund (ESF). We also thank the contribution of CONSOLIDER-Ingenio 2010 projects “Multidisciplinary Research Consortium on Gradual and Abrupt Climate Changes, and their Impacts on the Environment” (GRACCIE)” and CSD2008-00040 “Los montes españoles y el cambio global: amenazas y oportunidades (MONTES)”. Also, the “COST Action ES0603: EUPOL Assessment of production, release, distribution and health impact or allergenic pollen in Europe” and “Proyecto EOLO-PAT (Predicción Aerobiológica para Tenerife), which is a joint project between Laboratori d'Anàlisis Palinològiques, Centro de Investigación Atmosférica de Izaña (CIAI) and Air Liquide España S.A. The authors also gratefully acknowledge the colaboration of Sergio Afonso (responsible for collection samples in IZO y SCO) and Rut Puigdemunt (responsible for pollen analysis in SCO). Finally, we thank the NASA for satellite images acquired by SeaWiFS (Sea-viewing Wide Field of view Sensor) and MODIS (Moderate Resolution Imaging Spectroradiometer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebeca Izquierdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izquierdo, R., Belmonte, J., Avila, A. et al. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands). Int J Biometeorol 55, 67–85 (2011). https://doi.org/10.1007/s00484-010-0309-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0309-1

Keywords

Navigation