Skip to main content
Log in

Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

  • Review
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achten J, Asker JE (2003) Heart rate monitoring: applications and limitations. Sports Med 33(7):517

    PubMed  Google Scholar 

  • ACSM (2006) ACSM’s guidelines for exercise testing and prescription, 7th edn. Lippincott Williams and Wilkins, Baltimore

  • Ahmed KS (2003) Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energy Build 35(1):103–110

    Google Scholar 

  • Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9):498–516

    Google Scholar 

  • Ali-Toudert F, Mayer H (2007) Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol Energy 81(6):742–754

    Google Scholar 

  • Arnfield JA (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the Urban Heat Island. Int J Climatol 23(1):1–26

    Google Scholar 

  • ASHRAE (1966) Thermal comfort conditions. ASHRAE Standards. ASHRAE, New York, pp 55–66

  • Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24(2):190–202

    PubMed  Google Scholar 

  • Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96

    Google Scholar 

  • Brager GS, Paliaga G, deDear RJ (2004) Operable windows, personal control, and occupant comfort, vol 110. ASHRAE Transactions, ASHRAE, New York

  • Brotherhood JR (2008) Heat stress and strain in exercise and sport. J Sci Med Sport 11(1):6–19

    PubMed  Google Scholar 

  • Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeorol 30(1):43–52

    CAS  PubMed  Google Scholar 

  • Bruse M (2004) Envi-met website. Online: http://www.envimet.com

  • Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13(3–4):373–384

    Google Scholar 

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11(1):20

    PubMed  Google Scholar 

  • Bulcao CF, Frank SM, Raja SN, Tran KM, Goldstein DS (2000) Relative contribution of core and skin temperatures to thermal comfort in humans. J Therm Biol 25(1–2):147–150

    Google Scholar 

  • Burton AC (1934) The application of the theory of heat flow to the study of energy metabolism. J Nutr 7:497–533

    CAS  Google Scholar 

  • Butera FM (1998) Chapter 3—principles of thermal comfort. Renew Sustain Energy Rev 2(1–2):39–66

    Google Scholar 

  • de Beer H (2004) Obervations of the history of Dutch physical stature from the late-Middle Ages to the present. Econ Hum Biol 2(1):45–55

    PubMed  Google Scholar 

  • de Dear RJ, Breager GS (1998) Developing an adaptive model of thermal comfort and preference. Centre for the Built Environment, UC Berkely. http://www.escholarhsip.org/uc/item/4qq2pc6

  • de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy Build 34:549–561

    Google Scholar 

  • Eliasson I (2000) The use of climate knowledge in urban planning. Landsc Urban Plan 48(1–2):31–44

    Google Scholar 

  • Eliasson I, Knez I, Westerberg U, Thorsson S, Lindberg F (2007) Climate and behaviour in a Nordic city. Landsc Urban Plan 82(1–2):72–84

    Google Scholar 

  • Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading-a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27(14):995–2004

    Google Scholar 

  • Epstein Y, Moran DS (2006) Evaluation of the environmental stress index (esi) for hot/dry and hot/wet climates. Ind Health 44(3):399–403

    PubMed  Google Scholar 

  • Fanger PO (1970) Thermal comfort. Analysis and application in Environmental Engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  • Fanger PO (1972) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  • Fanger PO, Toftum J (2002) Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build 34:533–536

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972

    CAS  PubMed  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2007) Dynamic simulation of human heat transfer and thermal comfort. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Proceedings of the 12th International Conference on Environment Ergonomics, Biomed, Piran, Slovenia, August 2007, pp 513–515

  • Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:247–262

    Google Scholar 

  • Gagge AP, Nishi Y (1977) Heat exchange between human skin surface and thermal environment. In: Lee DHK (ed) Handbook of physiology. Williams and Wilkins, Baltimore

  • Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHREA Transactions 92:2B:88–96

    Google Scholar 

  • Gaitani N, Mihalakakou G, Santamouris M (2007) On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build Environ 42(1):317–324

    Google Scholar 

  • Galea S, Vlahov D (2005) Urban health: evidence, challenges and directions. Annu Rev Publ Health 26(1):341–365

    Google Scholar 

  • Gavin TP (2003) Clothing and thermoregulation during exercise. Sports Med 33(13):941–947

    PubMed  Google Scholar 

  • Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues. Energ Buildings 35(1):77–86

    Google Scholar 

  • Golden JS, Hartz D, Brazel A, Luber G, Phelan P (2008) A biometeorology study of climate and heat-related morbidity in phoenix from 2001 to 2006. Int J Biometeorol 52(6):471–480

    PubMed  Google Scholar 

  • Gosling S, McGregor G, Lowe J (2009) Climate change and heat-related mortality in six cities part 2: climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int J Biometeorol 53(1):31–51

    PubMed  Google Scholar 

  • Gulyas A, Unger J, Matzarakis A (2006) Assessment of the microclimatic and human comfort conditions in a complex urban environment: modelling and measurements. Build Environ 41(12):1713–1722

    Google Scholar 

  • Handy S (2004) Health and community design: the impact of built environment on physical activity. J Am Plan Assoc 70(3):375–377

    Google Scholar 

  • Hardy JD, Dubois ER (1938) The technique of measuring radiation and convection. J Nutr 15:461–475

    CAS  Google Scholar 

  • Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L (2006) Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med 63(11):2847–2863

    PubMed  Google Scholar 

  • Havenith G, Holmr I, Parsons K (2002) Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energ Buildings 34(6):581–591

    Google Scholar 

  • Hodder SG, Parsons KC (2007) The effects of solar radiation on thermal comfort. Int J Biometeorol 51(3):233–250

    PubMed  Google Scholar 

  • Holmer PKC I (1999) Clothing convective heat exchange - proposal for improved prediction in standards and models. Ann Occup Hyg 43:329–337

    Google Scholar 

  • Hoppe P (1984) Die Energiebilanz des Menschen. Wiss Mitt Meteorol Inst Univ Munchen 49

  • Hoppe P (1999) The physiological equivalent temperature a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75

    CAS  PubMed  Google Scholar 

  • Hoppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Energ Buildings 34(6):661–665

    Google Scholar 

  • Hu W, Mengersen K, McMichael A, Tong S (2008) Temperature, air pollution and total mortality during summers in Sydney, 1994–2004. Int J Biometeorol 52(7):689–696

    PubMed  Google Scholar 

  • Huang J (2007) Prediction of air temperature for thermal comfort of people in outdoor environments. Int J Biometeorol 51(5):375–382

    PubMed  Google Scholar 

  • Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36(6):691–699

    Google Scholar 

  • ISO7730 (2005) ISO 7730: ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO, Geneva

    Google Scholar 

  • ISO7933 (1989) ISO 7933: Hot environments: analytical determination and interpretation of thermal stress using calculation of required sweat rate. ISO, Geneva

    Google Scholar 

  • ISO8996 (1990) ISO 8996: Ergonomics of the thermal environment: estimation of metabolic heat production. ISO, Geneva

    Google Scholar 

  • ISO9920 (2007) ISO 9920: Ergonomics of the thermal environment: estimation of thermal insulation and water vapour resistance of a clothing ensemble. ISO, Geneva

    Google Scholar 

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E, deDear R (2008) The Universal Thermal Climate Index UTCI—Goal and State of COST Action 730 and ISB Commission 6. In: Proceedings 18th Int. Congress Biometeorology ICB 2008, Tokyo

  • Johansson E, Rohinton E (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133

    PubMed  Google Scholar 

  • Jones BW (2002) Capabilities and limitations of thermal models for use in thermal comfort standards. Energ Buildings 34(6):653–659

    Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TG (2008) Estimating the radiation absorbed by a human. Int J Biometeorol 52(6):491–503

    PubMed  Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TJ (2009a) Part A: assessing the performance of the COMFA outdoor thermal comfort model on subjects performing physical activity. Int J Biometeorol 415–428:415–428

    Google Scholar 

  • Kenny NA, Warland JS, Brown RD, Gillespie TJ (2009b) Part B: Revisions to the COMFA outdoor thermal comfort model for application to subjects performing physical activity. Int J Biometeorol 53:429–441

    PubMed  Google Scholar 

  • Kenshalo DR (1970) Psychophysical studies of temperature sensitivity. In: Neff WD (ed) Contributions to sensory physiology. Academic, New York

    Google Scholar 

  • Kerslake D (1972) The stress of hot environments. Cambridge University Press, London

    Google Scholar 

  • Knez I, Thorsson S, Eliasson I, Lindberg F (2009) Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. Int J Biometeorol 53(1):101–111

    PubMed  Google Scholar 

  • Lamb KL, Eston RG, Corns D (1999) Reliability of ratings of perceived exertion during progressive treadmill exercise. Br J Sports Med 33(5):336–339

    CAS  PubMed  Google Scholar 

  • Lin T (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44(10):2017–2026

    Google Scholar 

  • Lin T, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52(4):281–290

    PubMed  Google Scholar 

  • Lin T, Matzarakis A, Hwang R (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221

    Google Scholar 

  • Lindberg F, Holmer B, Thorsson S (2008) Solweig 1.0-Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorol 52(7):697–713

    PubMed  Google Scholar 

  • Mairiaux P, Malchaire J, Candas V (1987) Prediction of mean skin temperature in warm environments. Eur J Appl Phys 56(6):686–692

    CAS  Google Scholar 

  • Mateeva Z, Enache L, Mateeva N (2009) Bioclimatic effects on man and their assessment for the purposes of recreation and tourism. Ecology & Safety. International Scientific Publications Technomat & Infotel, ISSN 1313-2563

  • Matzarakis A (2000) Estimation and calculation of the mean radiant temperature within urban structures, Manual to Rayman. University of Freiburg, Germany

    Google Scholar 

  • Matzarakis A, Rutz F (2005) Appliation of Rayman for tourism and climate investigations. In: Proceedings of the 17th International Conference of Biometeorology. (ICB 2005), Deutscher Wetterdienst, Germisch-Partenkirchen, Germany, pp 631–636

  • Matzarakis A, Rutz F, Mayer H (1999) Estimation and calculation of the mean radiant temperature within urban structures. In: de Dear RJ, Kalma JD, Oke TR, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millennium. Selected papers from the conference ICB-ICUC99, WCASP-50, WMO/TD, 1026, pp 273–278

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments, application of the RayMan model. Int J Biometeorol 51(4):323–334

    PubMed  Google Scholar 

  • Maw G, Boutcher S, Taylor N (1993) Ratings of perceived exertion and effect in hot and cool environments. Eur J Appl Phys 67:174–179

    CAS  Google Scholar 

  • Mayer H, Hoppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Google Scholar 

  • Metje N, Sterling M, Baker CJ (2008) Pedestrian comfort using clothing values and body temperatures. J Wind Eng Ind Aerodyn 96(4):412–435

    Google Scholar 

  • Mitchell D, Wyndham CH (1969) Comparison of weighting formulas for calculating mean skin temperature. J Appl Physiol 26(5):616–622

    CAS  PubMed  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Butterworth-Heinemann, New York

    Google Scholar 

  • Mora-Rodriguez R, Del Cosa J, Estevez E (2008) Thermoregulatory responses to constant versus variable-intensity exercise in the heat. Med Sci Sports Exerc 40(11):1945

    PubMed  Google Scholar 

  • Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44(9):1777–1787

    Google Scholar 

  • Murakami S, Kato S, Zeng J (2000) Combined simulation of airflow, radiation and moisture transport for heat release from a human body. Build Environ 35(6):489–500

    Google Scholar 

  • Nakano J, Tanabe S (2004) Thermal comfort and adaptation in semi-outdoor environments. ASHRAE Transactions 110(2):543–553

    Google Scholar 

  • Nielsen B (1990) Solar heat load: heat balance during exercise in clothed subjects. Eur J Appl Phys 60(6):452–456

    CAS  Google Scholar 

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energ Build 35(1):95–101

    Google Scholar 

  • Nikolopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: analysis across different european countries. Build Environ 41(11):1455–1470

    Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70(3):227–235

    Google Scholar 

  • Oke TR (2003) Boundary layer climates, 2nd edn. Routledge Taylor and Francis, London

    Google Scholar 

  • Olesen BW, Parsons KC (2002) Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energ Build 34(6):537–548

    Google Scholar 

  • Paciuck M (1990) The role of personal control of the environment in thermal comfort and satisfaction at the workplace. In: Shelby R, Anthony K, Choi J, Orland B (eds) Coming of Age. Edra 21. Environmental Design and Research Association, Oklahoma, pp 303–312

    Google Scholar 

  • Parsons KC (2003) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance, 2nd edn. Taylor and Francis, New York

    Google Scholar 

  • Pearlmutter D, Krger EL, Berliner P (2009) The role of evaporation in the energy balance of an open-air scaled urban surface. Int J Climatol 29(6):911–920

    Google Scholar 

  • Peel MC, Finlayson B, McMahon TA (2007) Updated world map of the Koppen-Geiger Classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pickup J, de Dear RJ (2000) An outdoor thermal comfort index (OUT_SET). Part 1—The model and its assumptions. In: de Dear RJ, Kalma JD, Oke TR, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millenium. Selected Papers from the ICB-ICUC’99 Conference, World Meteorological Organization, Geneva, 1026, pp ICB9.4.1–6, wCASP-50, WMO/TD

  • Psikuta A, Richards M, Fiala D (2008) Single-sector thermo-physiological human simulator. Physiol Meas 29:181–192

    PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19(3):531–533

    CAS  PubMed  Google Scholar 

  • Revich B, Shaposhnikov D (2008) Temperature-induced excess mortality in Moscow, Russia. Int J Biometeorol 52(5):367–374

    PubMed  Google Scholar 

  • Richards M, Havenith G (2007) Progress towards the final UTCI model. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Proceedings of the 12th International Conference on Environment Ergonomics, pp 521–524

  • Sakoi T, Tsuzuki K, Kato S, Ooka R, Song D, Zhu S (2007) Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields. Build Environ 42(12):3984–3999

    Google Scholar 

  • Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46(4):371–384

    Google Scholar 

  • Sheridan SC, Dolney TJ (2003) Heat, mortality, and level of urbanization: measuring vulnerability across Ohio, USA. Clim Res 24(3):255–265

    Google Scholar 

  • Shibasaki M, Wilson TE, Crandall CG (2006) Neural control and mechanisms of eccrine sweating during heat stress and exercise. J Appl Physiol 100(5):1692–1701

    PubMed  Google Scholar 

  • Smoyer KE, Rainham DGC, Hewko JN (2000) Heat-stress-related mortality in five cities in Southern Ontario: 1980–1996. Int J Biometeorol 44:190–197

    CAS  PubMed  Google Scholar 

  • Spagnolo J, de Dear RJ (2003) A field study of thermal comfort in outdoor and semioutdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738

    Google Scholar 

  • Sparks S, Cable N, Doran D, Maclaren D (2005) The influence of environmental temperature on duathlon performance. Ergonomics 48:1558–1567

    CAS  PubMed  Google Scholar 

  • Stolwijk JAA, Hardy JD (1961) Temperature regulation in man—a theoretical study. Pflugers Archiv Ges Physiol 291

  • Stolwijk JAA, Hardy JD (1977) Control of body temperature. In: Lee DHK (ed) Handbook of physiology. Section 9. Reaction to environmental agents. Williams and Wilkins, Bethesda, pp 45–68

  • Svensson MK (2004) Sky view factor analysis implications for urban air temperature differences. Meteorol Appl 11(3):201–211

    Google Scholar 

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34(6):637–646

    Google Scholar 

  • Thorsson S, Honjo T, Lindberg F, Eliasson I, Lim EM (2007a) Thermal comfort and outdoor activity in japanese urban public places. Environ Behav 39(5):660–684

    Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007b) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27(14):1983–1993

    Google Scholar 

  • Tucker R, Marle T, Lambert EV, Noakes TD (2006) The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol 574(3):905–915

    CAS  PubMed  Google Scholar 

  • UTCI (2009) Universal thermal climate index. Online: http://www.utci.org/index.php

  • VDI (1998) Methods for the human-biometeorological evaluation of climate and air quality for urban and regional planning. Part I: Climate. VDI guideline 3787. Part 2. Beuth, Berlin

    Google Scholar 

  • Watkins R, Palmer J, Kolokotromi M (2007) Increased temperature and intensification of the Urban Heat Island: Implications for human comfort and urban design. Built Environ 33(1):85–96

    Google Scholar 

  • Wyss CR, Brengelmann GL, Johnson JM, Rowell LB, Niederberger M (1974) Control of skin blood flow, sweating, and heart rate: role of skin vs. core temperature. J Appl Physiol 36(6):726–733

    CAS  PubMed  Google Scholar 

  • Yao Y, Lian Z, Liu W, Shen Q (2007) Experimental study on skin temperature and thermal comfort of the human body in a recumbent posture under uniform thermal environments. Indoor Built Environ 16(6):505

    Google Scholar 

  • Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort—Adaptive Predicted Mean Vote (aPMV). Build Environ 44(10):2089–2096

    Google Scholar 

  • Zhang Y, Zhao R (2009) Relationship between thermal sensation and comfort in nonuniform and dynamic environments. Build Environ 44(7):1386–1391

    Google Scholar 

  • Zhang H, Huizenga C, Arens E, Yu T (2001) Considering individual physiological differences in a human thermal model. J Therm Biol 26(4–5):401–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon S. Warland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanos, J.K., Warland, J.S., Gillespie, T.J. et al. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int J Biometeorol 54, 319–334 (2010). https://doi.org/10.1007/s00484-010-0301-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0301-9

Keywords

Navigation