Skip to main content
Log in

An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels

  • Original Article
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamopoulos AD, Kambezidis HD, Zevgolis D (2002) Case studies of total NO2 column in the atmosphere of Athens, Greece: Comparison between summer and winter. Fresen Environ Bull 11:484–487

    CAS  Google Scholar 

  • Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York

    Google Scholar 

  • Bartzokas A, Metaxas DA (1993) Covariability and climatic changes of the lower troposphere temperatures over the Northern Hemisphere. Nouvo Cimento C 16C:359–373

    Article  Google Scholar 

  • Bartzokas A, Metaxas DA (1995) Factor analysis of some climatological elements in Athens, 1931–1992: covariability and climatic change. Theor Appl Climatol 52:195–205

    Article  Google Scholar 

  • Borhidi A (1995) Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot Hun 39:97–181

    Google Scholar 

  • D’Amato G (2000) Urban air pollution and plant-derived respiratory allergy. Clin Exp Allergy 30:628–636

    Article  PubMed  CAS  Google Scholar 

  • Damialis A, Gioulekas D, Lazopoulou C, Balafoutis C, Vokou D (2005) Transport of airborne pollen into the city of Thessaloniki: the effects of wind direction, speed and persistence. Int J Biometeorol 49/3:139–145

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropas. Scripta Geobot 18: Goltze Verlag, Göttingen

    Google Scholar 

  • Fornaciari M, Bricchi E, Greco F, Fascini D, Giannoni C, Frenguelli G, Romano B (1992) Daily variations of Urticaceae pollen count and influence of meteoclimatic parameters in East Perugia during 1989. Aerobiologia 8:407–413

    Article  Google Scholar 

  • Galán C, Alcázar P, Cariòanos P, Garcia H, Domínguez-Vilches E (2000) Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. Int J Biometeorol 43:191–195

    Article  PubMed  Google Scholar 

  • Geller-Bernstein C, Kenett R, Waisel Y (1996) Aerobiology in the prevention of allergy. In: Tariq SM, Emberlin J (eds) Clinical applications of aerobiology. Braine-L’Alleud, The UCB Institute for Allergy pp 69–75

  • Geller-Bernstein C, Lahoz C, Cárdaba B, Hassoun G, Iancovici-Kidon M, Kenett R, Waisel Y (2002) Is it “bad hygiene” to inhale pollen in early life? Allergy 57/71:37

    Article  Google Scholar 

  • Giner MM, Carrión Garcia JS, Garcia Sellés J (1999) Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin. Int J Biometeorol 43:51–63

    Article  PubMed  Google Scholar 

  • Gioulekas D, Balafoutis C, Damialis A, Papakosta D, Gioulekas G, Patakas, D (2004) Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. Int J Biometeorol 48/3:128–136

    Article  Google Scholar 

  • Golder D (1972) Relations among stability parameters in the surface layer. Boundary Layer Meteor 3:47–58

    Article  Google Scholar 

  • Green BJ, Dettmann M, Yli-Panula E, Rutherford S, Simpson R (2004) Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994–1999. Int J Biometeorol 48/4:172–178

    Article  Google Scholar 

  • Hair JF, Anderson RE, Tatham RL, Black WC (1998) Multivariate data analysis, 5th edn. Prentice Hall, New Jersey, p 730

    Google Scholar 

  • Horváth F, Dobolyi ZK, Morschhauser T, Lõkös L, Karas L, Szerdahelyi T (1995) Flora database 1.2. Ecological and Botanical Institute of the Hungarian Academy of Sciences (in Hungarian), Vácrátót

    Google Scholar 

  • Járai-Komlódi M (1998) Ragweed in Hungary. In: Spieksma F Th M (ed) Ragweed in Europe. Satellite Symposium Proceedings of 6th International Congress on Aerobiology, Perugia, Italy. Alk Abelló A/S, Horsholm, Denmark pp 33–38

    Google Scholar 

  • Jolliffe IT (1990) Principal component analysis: a beginner’s guide. I. Introduction and application. Weather 45:375–382

    Google Scholar 

  • Jolliffe IT (1993) Principal component analysis: a beginner’s guide. II. Pitfalls, myths and extensions. Weather 48:246–253

    Google Scholar 

  • Juhász M (1995) New results of aeropalynological research in Southern Hungary. Publications of the Regional Committee of the Hungarian Academy of Sciences, Szeged 5:17–30

  • Kalkstein LS, Tan G, Skindlov JA (1987) An evaluation of three clustering procedures for use in synoptic classification. J Climate Appl Meteorol 26:717–730

    Article  Google Scholar 

  • Kambezidis HD, Weidauer D, Melas D, Ulbricht M (1998) Air quality in the Athens basin during sea breeze and non-sea breeze days using laser-remote-sensing technique. Atmos Environ 32:2173–2182

    Article  CAS  Google Scholar 

  • Käpylä M, Penttinen A (1981) An evaluation of the microscopial counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana 20:131–141

    Article  Google Scholar 

  • Makra L, Kiss Á, Palotás J (1985) The spatial and temporal variability of drought in the southern part of the Great Hungarian Plain. Acta Clim Univ Szegediensis 18–20:65–85

    Google Scholar 

  • Makra L, Horváth Sz, Sümeghy Z (2002) An objective analysis and ranking of cities on environmental and social factors. IGU 2002. Geographical Renaissance at the Dawn of the Millennium. In: Nkemdirim LC (ed) Climates in transition. Minuteman, Durban, South-Africa, pp 161–172

    Google Scholar 

  • Makra L, Juhász M, Béczi R, Borsos E (2004a) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:57–64

    Article  Google Scholar 

  • Makra L, Juhász M, Borsos E, Béczi R (2004b) Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int J Biometeorol 49:37–47

    Article  PubMed  CAS  Google Scholar 

  • Makra L, Mika J, Bartzokas A, Béczi R, Borsos E Sümeghy Z (2006) An objective classification system of air mass types for Szeged, Hungary with special interest to the levels of the main air pollutants. Meteorol Atmos Phys 92/1-2:115–137

    Article  Google Scholar 

  • McGregor GR, Bamzelis D (1995) Synoptic typing and its application to the investigation of weather - air pollution relationships, Birmingham, United Kingdom. Theor Appl Climatol 51:223–236

    Article  Google Scholar 

  • Mezei G, Járai-Komlódi M, Papp E, Cserháti E (1992) Late summer pollen and allergen spectrum in children with allergic rhinitis and asthma in Budapest. Pädiatrie Pädologie 27/3:75

    Google Scholar 

  • Mohl M, Gaskó B, Horváth Sz, Makra L, Szabó F (2002) 2nd Environmental Programme of Szeged, 2003–2007. Manuscript (in Hungarian) (Mayor’s Office, H-6720 Szeged, Széchenyi tér 10, Hungary)

  • Pasquill F (1962) Atmospheric diffusion. Van Nostrand, London p 209

    Google Scholar 

  • Péczely G (1957) Grosswetterlagen in Ungarn. Kleinere Veröffentlichungen der Zentralanstalt für Meteorologie Budapest 30:86, Budapest

  • Péczely G (1979) Climatology (in Hungarian). Tankönyvkiadó, Budapest, p 336

    Google Scholar 

  • Péczely G (1983) Catalogue of the macrosynoptic types for Hungary (1881–1983) (in Hungarian). Hungarian Meteorological Service 53:116, Budapest

  • Rodríguez-Rajo FJ, Frenguelli G, Jato MV (2003) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). Int J Biometeorol 47/3:117–125

    Google Scholar 

  • Rodríguez-Rajo FJ, Dacosta N, Jato V (2004a) Airborne olive pollen in Vigo (Northwest Spain): a survey to forecast the onset and daily concentrations of the pollen season. Grana 43/2:101–110

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Iglesias I, Jato, V (2004b) Allergenic airborne pollen monitoring of Vigo (NW Spain) in 1995–2001. Grana 43/3:164–173

    Article  Google Scholar 

  • Sindosi OA, Katsoulis BD, Bartzokas A (2003) An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels. Environ Technol 24:947–962

    Article  PubMed  CAS  Google Scholar 

  • Stennett PJ, Beggs PJ (2004) Pollen in the atmosphere of Sydney, Australia, and relationships with meteorological parameters. Grana 43/4:209–216

    Article  Google Scholar 

  • Turner DB (1964) A diffusion model for an urban area. J Appl Meteorol 3:83–91

    Article  Google Scholar 

  • Vázquez LM, Galán C, Domínguez-Vilches E (2003) Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). Int J Biometeorol 48/2:83–90

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Analysis and Methodology, Hungarian Meteorological Service for providing the sea-level pressure data for the investigated period, Gábor Motika (Environmental Protection Inspectorate of Lower-Tisza Region, Szeged, Hungary) for handling meteorological and air pollution data and Áron Deák József for advice on plant ecology. This study was supported by the Hungarian National Foundation for Scientific Research (OTKA No. T 034765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Makra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makra, L., Juhász, M., Mika, J. et al. An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels. Int J Biometeorol 50, 403–421 (2006). https://doi.org/10.1007/s00484-006-0026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-006-0026-y

Keywords

Navigation