Skip to main content
Log in

Neurobiologie viszeraler Schmerzen

Neurobiology of visceral pain

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Viszerale Schmerzen werden diffus lokalisiert und in andere Gewebe übertragen, sind häufig nicht mit aktuellen viszeralen Entzündungen korreliert, werden bevorzugt von vegetativen und motorischen Reflexen begleitet und zeichnen sich durch starke negative Affekte aus. Sie gehören zusammen mit anderen Schmerzen und Körperempfindungen in den Bereich der Interozeption. 1) Viszerale Schmerzen sind mit der Erregung spinaler (thorakolumbaler, sakraler) viszeraler Afferenzen korreliert und (mit einigen Ausnahmen) nicht mit der Erregung vagaler Afferenzen. Spinale viszerale Afferenzen sind polymodal und werden adäquat durch mechanische sowie chemische Reize aktiviert. Alle Gruppen spinaler viszeraler Afferenzen können sensibilisiert werden (z. B. durch Entzündungen). Stumme (mechanisch nichterregbare) spinale viszerale Afferenzen werden bei Entzündungen rekrutiert. 2) Spinale viszerale afferente Neurone projizieren in die Laminae I, II (äußere Schicht IIo) und V des Hinterhorns über mehrere Segmente, mediolateral über die gesamte Breite des Hinterhorns und nach kontralateral. Ihre Aktivität wird in die Laminae I, IIo und tieferen Laminae auf viszerosomatische Konvergenzneurone übertragen, die ebenso afferente synaptische (meist nozizeptive) Eingänge von der Haut und von tiefen somatischen Geweben der entsprechenden Dermatome, Myotome und Sklerotome erhalten. 3) Die Sekundärneurone bestehen aus erregenden und hemmenden Interneuronen (etwa 90 % aller Hinterhornneurone) und Traktneuronen, die in Lamina I monosynaptisch von viszeralen afferenten Neuronen und in tieferen Laminae di- oder polysynaptisch aktiviert werden. 4) An der Sensibilisierung viszerosomatischer Konvergenzneurone (zentrale Sensibilisierung) sind die Sensibilisierung spinaler viszeraler afferenter Neurone, lokale spinale erregende und hemmende Interneurone und supraspinale endogene Kontrollsysteme beteiligt. Die Mechanismen dieser zentralen Sensibilisierung sind wenig erforscht. 5) Viszerosomatische Traktneurone projizieren über den kontralateralen ventrolateralen spinalen Trakt und vermutlich andere aszendierende Trakte zum unteren und oberen Hirnstamm, zum Hypothalamus und über den Thalamus zu verschiedenen Kortexarealen. 6) Viszeraler Schmerz ist vermutlich (zusammen mit anderen viszeralen Empfindungen und nozizeptiven sowie nichtnozizeptiven somatischen Körperempfindungen) primär im posterioren dorsalen Inselkortex („primärer interozeptiver Kortex“) repräsentiert. Dieses Kortexareal erhält bei Primaten seine spinalen synaptischen Eingänge hauptsächlich von den Lamina-I-Traktneuronen über den Nucleus ventromedialis posterior des Thalamus. 7) Die Impulsübertragung viszeraler Afferenzen im Rückenmark wird hemmend und erregend durch endogene anti- und pronozizeptiv wirkende Kontrollsysteme im oberen und unteren Hirnstamm moduliert. Diese Kontrollsysteme stehen unter kortikaler Kontrolle. 8) Viszerale Schmerzen werden in tiefe somatische Gewebe, in die Haut und in andere viszerale Organe übertragen. Diese Übertragung besteht aus Spontanschmerz und mechanischer Hyperalgesie. Die Mechanismen der Übertragung und der sie begleitenden Gewebeveränderungen sind wenig erforscht worden.

Abstract

Visceral pain is diffusely localized, referred into other tissues, frequently not correlated with visceral traumata, preferentially accompanied by autonomic and somatomotor reflexes, and associated with strong negative affective feelings. It belongs together with the somatic pain sensations and non-painful body sensations to the interoception of the body. (1) Visceral pain is correlated with the excitation of spinal (thoracolumbar, sacral) visceral afferents and (with a few exceptions) not with the excitation of vagal afferents. Spinal visceral afferents are polymodal and activated by adequate mechanical and chemical stimuli. All groups of spinal visceral afferents can be sensitized (e.g., by inflammation). Silent mechanoinsensitive spinal visceral afferents are recruited by inflammation. (2) Spinal visceral afferent neurons project into the laminae I, II (outer part IIo) and V of the spinal dorsal horn over several segments, medio-lateral over the whole width of the dorsal horn and contralateral. Their activity is synaptically transmitted in laminae I, IIo and deeper laminae to viscero-somatic convergent neurons that receive additionally afferent synaptic (mostly nociceptive) input from the skin and from deep somatic tissues of the corresponding dermatomes, myotomes and sclerotomes. (3) The second-order neurons consist of excitatory and inhibitory interneurons (about 90 % of all dorsal horn neurons) and tract neurons activated monosynaptically in lamina I by visceral afferent neurons and di- or polysynaptically in deeper laminae. (4) The sensitization of viscero-somatic convergent neurons (central sensitization) is dependent on the sensitization of spinal visceral afferent neurons, local spinal excitatory and inhibitory interneurons and supraspinal endogenous control systems. The mechanisms of this central sensitization have been little explored. (5) Viscero-somatic tract neurons project through the contralateral ventrolateral tract and presumably other tracts to the lower and upper brain stem, the hypothalamus and via the thalamus to various cortical areas. (6) Visceral pain is presumably (together with other visceral sensations and nociceptive as well as non-nociceptive somatic body sensations) primarily represented in the posterior dorsal insular cortex (primary interoceptive cortex). This cortex receives in primates its spinal synaptic inputs mainly from lamina I tract neurons via the ventromedial posterior nucleus of the thalamus. (7) The transmission of activity from visceral afferents to second-order neurons in spinal cord is modulated in an excitatory and inhibitory way by endogenous anti- and pronociceptive control systems in the lower and upper brain stem. These control systems are under cortical control. (8) Visceral pain is referred to deep somatic tissues, to the skin and to other visceral organs. This referred pain consists of spontaneous pain and mechanical hyperalgesia. The mechanisms underlying referred pain and the accompanying tissue changes have been little explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Notes

  1. Die Existenz des VMpo im Thalamus von Primaten, seine hauptsächlichen aszendierenden synaptischen Eingänge von spinalen und trigeminalen Lamina I Neuronen und die Projektion der VMpo-Neurone zum dorsalen posterioren Inselkortex wurde zuerst von Craig und Mitarbeitern beschrieben [37, 39, 42]. Die Existenz und funktionelle Bedeutung des VMpo wird in der Literatur kontrovers diskutiert und von einigen Experimentatoren bezweifelt [38, 98, 135].

  2. Die Idee der sensorischen Innervation der Knochen geht auf Déjerine [41] zurück. Inman u. Saunders [75] haben die räumliche Ausdehnung der sensorischen Innervation der Knochen der oberen Extremitäten, des Schultergürtels, der unteren Extremitäten und des Beckengürtels durch die Spinalnerven zum ersten Mal systematisch untersucht sowie beschrieben und die Knochenbereiche, die durch einen Spinalnerven innerviert werden, als Sklerotom bezeichnet. Die Sklerotome wurden mit modernen Methoden allerdings nie nachuntersucht. Insgesamt ist die direkte experimentelle Evidenz für die segmentale Innervation des Knochenapparats und damit für die Existenz der Sklerotome bisher nicht gut belegt worden [76].

Literatur

  1. Al Chaer ED, Lawand NB, Westlund KN, Willis WD (1996) Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J Neurophysiol 76:2675–2690

    Google Scholar 

  2. Al Chaer ED, Lawand NB, Westlund KN, Willis WD (1996) Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 76:2661–2674

    Google Scholar 

  3. Apkarian AV, Bushnell MC, Schweinhardt P (2013) Representation of pain in the brain. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 111–128

  4. Apodaca G (2004) The uroepithelium: not just a passive barrier. Traffic 5:117–128

    Article  CAS  PubMed  Google Scholar 

  5. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  6. Bahns E, Ernsberger U, Jänig W, Nelke A (1986) Functional characteristics of lumbar visceral afferent fibres from the urinary bladder and the urethra in the cat. Pflügers Arch 407:510–518

    Article  CAS  PubMed  Google Scholar 

  7. Bahr R, Blumberg H, Jänig W (1981) Do dichotomizing afferent fibers exist which supply visceral organs as well as somatic structures? A contribution to the problem or referred pain. Neurosci Lett 24:25–28

    Article  CAS  PubMed  Google Scholar 

  8. Bandler R, Shipley MT (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotionel expression? Trends Neurosci 17:379–389

    Article  CAS  PubMed  Google Scholar 

  9. Bandler R, Price JL, Keay KA (2000) Brain mediation of active and passive emotional coping. Prog Brain Res 122:333–349

    Article  CAS  PubMed  Google Scholar 

  10. Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53:95–104

    Article  CAS  PubMed  Google Scholar 

  11. Banzett RB, Mulnier HE, Murphy K et al (2000) Breathlessness in humans activates insular cortex. Neuroreport 11:2117–2120

    Article  CAS  PubMed  Google Scholar 

  12. Barbara G, Cremon C, De Giorgio R et al (2011) Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep 13:308–315

    Article  PubMed  Google Scholar 

  13. Baron R, Jänig W, With H (1995) Sympathetic and afferent neurones projecting into forelimb and trunk nerves and the anatomical organization of the thoracic sympathetic outflow of the rat. J Auton Nerv Syst 53:205–214

    Article  CAS  PubMed  Google Scholar 

  14. Barsky AJ, Borus JF (1999) Functional somatic syndromes. Ann Intern Med 130:910–921

    Article  CAS  PubMed  Google Scholar 

  15. Beal MC (1983) Palpatory testing for somatic dysfunction in patients with cardiovascular disease. J Am Osteopath Assoc 82:822–831

    CAS  PubMed  Google Scholar 

  16. Beal MC (1985) Viscerosomatic reflexes: a review. J Am Osteopath Assoc 85:786–801

    CAS  PubMed  Google Scholar 

  17. Belmonte C, Cervero F (Hrsg) (1996) Neurobiology of nociceptors. Oxford University Press, Oxford

  18. Bielefeldt K, Gebhart GF (2013) Visceral pain: basic mechanisms. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 703–717

  19. Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289:F489–F495

    Article  CAS  PubMed  Google Scholar 

  20. Blumberg H, Haupt P, Jänig W, Kohler W (1983) Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pflugers Arch 398:33–40

    Article  CAS  PubMed  Google Scholar 

  21. Brierley SM, Jones RC III, Gebhart GF, Blackshaw LA (2004) Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127:166–178

    Article  PubMed  Google Scholar 

  22. Brierley SM, Hughes PA, Page AJ et al (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:2084–2095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brumovsky PR, Gebhart GF (2010) Visceral organ cross-sensitization – an integrated perspective. Auton Neurosci 153:106–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Bushnell MC, Duncan GH, Hofbauer RK et al (1999) Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A 96:7705–7709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cervero F (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74:95–138

    CAS  PubMed  Google Scholar 

  26. Cervero F, Jänig W (1992) Visceral nociceptors: a new world order? Trends Neurosci 15:374–378

    Article  CAS  PubMed  Google Scholar 

  27. Christianson JA, Bielefeldt K, Altier C et al (2009) Development, plasticity and modulation of visceral afferents. Brain Res Rev 60:171–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Christianson JA, Bielefeldt K, Malin SA, Davis BM (2010) Neonatal colon insult alters growth factor expression and TRPA1 responses in adult mice. Pain 151:540–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Coderre TJ (2009) Spinal cord mechanisms of hyperalgesia and allodynia. In: Basbaum AI, Bushnell MC (Hrsg) Science of pain. Elsevier, Amsterdam, S 339–380

  30. Coleridge JC, Coleridge HM (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110

    Article  CAS  PubMed  Google Scholar 

  31. Cox JM, Gorbis S, Dick LM et al (1983) Palpable musculoskeletal findings in coronary artery disease: results of a double-blind study. J Am Osteopath Assoc 82:832–836

    CAS  PubMed  Google Scholar 

  32. Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    Article  CAS  PubMed  Google Scholar 

  33. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    CAS  PubMed  Google Scholar 

  34. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505

    Article  CAS  PubMed  Google Scholar 

  35. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    Article  CAS  PubMed  Google Scholar 

  36. Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    Article  CAS  PubMed  Google Scholar 

  37. Craig AD (2004) Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 477:119–148

    Article  CAS  PubMed  Google Scholar 

  38. Craig AD, Blomqvist A (2002) Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J Pain 3:95–101

    Article  CAS  PubMed  Google Scholar 

  39. Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Article  CAS  PubMed  Google Scholar 

  40. Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    Article  CAS  PubMed  Google Scholar 

  41. Déjerine J (1914) Sémiologie du Système Nerveux. Masson, Paris

  42. Dostrovsky JO, Craig AD (2013) Ascending projection systems. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 182–197

  43. Farmer AD, Aziz Q (2009) Visceral pain hypersensitivity in functional gastrointestinal disorders. Br Med Bull 91:123–136

    Article  CAS  PubMed  Google Scholar 

  44. Feng B, Gebhart GF (2011) Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol 300:G170–G180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Feng B, La JH, Schwartz ES, Gebhart GF (2012) Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 302:G1085–G1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Feng B, La JH, Schwartz ES et al (2012) Long-term sensitization of mechanosensitive and -insensitive afferents in mice with persistent colorectal hypersensitivity. Am J Physiol Gastrointest Liver Physiol 302:G676–G683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Foerster O (1933) The dermatomes in man. Brain 56:1–39

    Article  Google Scholar 

  48. Foreman RD (1989) Organization of the spinothalamis tract as a relay for cardiopulmonary sympathetic afferent fiber activity. Prog Sensory Physiol 9:1–51

    Article  Google Scholar 

  49. Foreman RD (1999) Mechanisms of cardiac pain. Annu Rev Physiol 61:143–167

    Article  CAS  PubMed  Google Scholar 

  50. Giamberardino MA (Hrsg) (2009) Visceral pain. Oxford University Press, Oxford

  51. Giamberardino MA, Costantini R, Affaitati G et al (2010) Viscero-visceral hyperalgesia: characterization in different clinical models. Pain 151:307–322

    Article  PubMed  Google Scholar 

  52. Graven-Nielsen T (2006) Fundamentals of muscle pain, referred pain, and deep tissue hyperalgesia. Scand J Rheumatol Suppl 122:1–43

    Article  CAS  PubMed  Google Scholar 

  53. Graven-Nielsen T, Arendt-Nielsen L, Mense S (Hrsg) (2008) Fundamentals of musculoskeletal pain. IASP Press, Seattle

  54. Häbler HJ, Jänig W, Koltzenburg M (1988) Dichotomizing unmyelinated afferents supplying pelvic viscera and perineum are rare in the sacral segments of the cat. Neurosci Lett 94:119–124

    Article  PubMed  Google Scholar 

  55. Häbler HJ, Jänig W, Koltzenburg M (1990) Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol (Lond) 425:545–562

  56. Häbler HJ, Jänig W, Koltzenburg M, McMahon SB (1990) A quantitative study of the central projection patterns of unmyelinated ventral root afferents in the cat. J Physiol 422:265–287

    PubMed Central  PubMed  Google Scholar 

  57. Häbler HJ, Jänig W, Koltzenburg M (1993) Receptive properties of myelinated primary afferents innervating the inflamed urinary bladder of the cat. J Neurophysiol 69:395–405

    PubMed  Google Scholar 

  58. Häbler HJ, Jänig W, Koltzenburg M (1993) Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the urinary bladder. J Physiol (Lond) 463:449–460

  59. Hansen K (1963) Viszeraler Schmerz (segmentale Projektionen). In: Monnier M (Hrsg) Physiologie und Pathophysiologie des vegetativen Nervensystems. Hippokrates, Stuttgart, S 760–770

  60. Hansen K, Schliack K (1962) Die segmentale Innervation: ihre Bedeutung für Klinik und Praxis. Thieme, Stuttgart

  61. Head H (1893) On disturbances of sensation with especial reference to the pain of visceral disease. Brain 16:1–133

    Article  Google Scholar 

  62. Head H, Campbell AW (1900) The pathology of herpes zoster and its bearing on sensory localization. Brain 23:353–523

    Article  Google Scholar 

  63. Heinricher MM, Fields HL (2013) Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 5. Aufl. Elsevier Saunders, Philadelphia, S 129–142

  64. Heinricher MM, Ingram SL (2009) The brain stem and nociceptive modulation. In: Basbaum AI, Bushnell MC (Hrsg) Science of pain. Academic Press, San Diego, S 593–626

  65. Henningsen P, Zipfel S, Herzog W (2007) Management of functional somatic syndromes. Lancet 369:946–955

    Article  PubMed  Google Scholar 

  66. Holzer P (2003) Afferent signalling of gastric acid challenge. J Physiol Pharmacol 54(Suppl 4):43–53

    PubMed  Google Scholar 

  67. Holzer P (2006) Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci 125:70–75

    Article  PubMed  Google Scholar 

  68. Holzer P (2007) Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 7:563–569

    Article  CAS  PubMed  Google Scholar 

  69. Holzer P (2009) The role of the vagus nerve in afferent signaling and homeostasis during visceral inflammation. In: Jancsó G (Hrsg) Neurogenic inflammation in health and disease. Elsevier, Amsterdam, S 321–338

  70. Holzer P (2011) Acid sensing by visceral afferent neurones. Acta Physiol (Oxf) 201:63–75

    Google Scholar 

  71. Holzer P, Maggi CA (1998) Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons. Neurosci 86:389–398

    Article  CAS  Google Scholar 

  72. Hughes PA, Brierley SM, Blackshaw LA (2009) Post-inflammatory modification of colonic afferent mechanosensitivity. Clin Exp Pharmacol Physiol 36:1034–1040

    Article  CAS  PubMed  Google Scholar 

  73. Hughes PA, Brierley SM, Martin CM et al (2009) Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58:1333–1341

    Article  CAS  PubMed  Google Scholar 

  74. Hughes PA, Harrington AM, Castro J et al (2013) Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62:1456–1465

    Article  CAS  PubMed  Google Scholar 

  75. Inman VT, Saunders JBdM (1944) Referred pain from skeletal structures. J Nerv Ment Dis 99:660–667

    Article  Google Scholar 

  76. Ivanusic JJ (2007) The evidence for the spinal segmental innervation of bone. Clin Anat 20:956–960

    Article  PubMed  Google Scholar 

  77. Jänig W (1993) Spinal visceral afferents, sympathetic nervous system and referred pain. In: Vecchiet L, Albe-Fessard D, Lindblom U, Giamberardino MA (Hrsg) „New trends in referred pain and hyperalgesia“, pain research and clinical management, Bd 7. Elsevier, Amsterdam, S 83–92

  78. Jänig W (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 42:29–51

    Article  PubMed  Google Scholar 

  79. Jänig W (2005) Vagal afferents and visceral pain. In: Undem B, Weinreich D (Hrsg) Advances in vagal afferent neurobiology. CRC, Boca Raton, S 461–489

  80. Jänig W (2005) Neurobiologische Grundlagen von Reflextherapien in der Naturheilkunde. In: Bühring M, Kremer FH (Hrsg) Naturheilverfahren und unkonventionelle medizinische Richtungen, 2. Aufl, Sektion 1.06. Springer, Berlin Heidelberg New York Tokio, S 1–104

  81. Jänig W (2006) Visceral afferent neurons and autonomic regulations. In: The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge University Press, Cambridge, S 35–84

  82. Jänig W (2006) The integrative action of the autonomic nervous system. Neurobiology of homeostasis. Cambridge University Press, Cambridge

  83. Jänig W (2009) Autonomic nervous system dysfunction. In: Mayer EA, Bushnell MC (Hrsg) Functional pain syndromes. IASP, Seattle, S 265–300

  84. Jänig W (2009) Autonomic nervous system and pain. In: Basbaum AL, Bushnell MC (Hrsg) Science of pain. Academic Press, San Diego, S 193–225

  85. Jänig W (2009) Vagal afferent neurons and pain. In: Basbaum AL, Bushnell MC (Hrsg) Science of pain. Academic Press, San Diego, S 245–251

  86. Jänig W (2011) Function of the autonomic nervous system: current concepts. In: King H, Jänig W, Patterson M (Hrsg) The science and clinical application of manual therapy. Churchill Livingstone Elsevier, Edinburgh, S 15–58

  87. Jänig W (2011) Rolle von motorischen Rückkopplungsmechanismen in der Erzeugung von Schmerzen. In: Fischer L, Peuker ET (Hrsg) Lehrbuch Integrative Schmerztherapie. Haug in MVS, Stuttgart, S 81–89

  88. Jänig W, Baron R (2011) Pathophysiologie des Schmerzes. In: Fischer L, Peuker ET (Hrsg) Lehrbuch Integrative Schmerztherapie. Haugin MVS, Stuttgart, S 35–70

  89. Jänig W, Green P (2014) Acute inflammation in the joint: its control by the sympathetic nervous system and by neuroendocrine systems. Auton Neurosci Basic Clin 182:42–54

    Article  Google Scholar 

  90. Jänig W, Häbler HJ (1995) Visceral-autonomic integration. In: Gebhart GF (Hrsg) Visceral pain; progress in pain research and management, Bd 5. IASP, Seattle, S 311–348

  91. Jänig W, Häbler HJ (2002) Physiologie und Pathophysiologie viszeraler Schmerzen. Schmerz 16:429–446

    Article  PubMed  Google Scholar 

  92. Jänig W, Koltzenburg M (1990) On the function of spinal primary afferent fibres supplying colon and urinary bladder. J Auton Nerv Syst 30(Suppl):S89–S96

    Article  PubMed  Google Scholar 

  93. Janig W, Koltzenburg M (1991) Receptive properties of sacral primary afferent neurons supplying the colon. J Neurophysiol 65:1067–1077

    CAS  PubMed  Google Scholar 

  94. Jänig W, Koltzenburg M (1993) Pain arising from the urogenital tract. In: Burnstock G (Hrsg) The autonomic nervous system. Harwood, Chur, S 523–576

  95. Jänig W, Morrison JFB (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res 67:87–114

    Article  PubMed  Google Scholar 

  96. Jänig W, Khasar SG, Levine JD, Miao FJ (2000) The role of vagal visceral afferents in the control of nociception. Prog Brain Res 122:273–287

    Article  PubMed  Google Scholar 

  97. .Jänig W, Heymann W von, Böhni U (2014) Interozeption, Schmerz und vegetatives Nervensystem. In: Böhni U, Lauper M, Locher H (Hrsg) Handbuch der Manuellen Medizin 1. Thieme, Stuttgart (im Druck)

  98. Jones EG (2002) A pain in the thalamus. J Pain 3:102–104

    Article  PubMed  Google Scholar 

  99. Jones RC III, Xu L, Gebhart GF (2005) The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 25:10981–10989

    Article  CAS  PubMed  Google Scholar 

  100. Keszthelyi D, Troost FJ, Simren M et al (2012) Revisiting concepts of visceral nociception in irritable bowel syndrome. Eur J Pain 16:1444–1454

    Article  CAS  PubMed  Google Scholar 

  101. King AB, Menon RS, Hachinski V, Cechetto DF (1999) Human forebrain activation by visceral stimuli. J Comp Neurol 413:572–582

    Article  CAS  PubMed  Google Scholar 

  102. Lee MW, McPhee RW, Stringer MD (2008) An evidence-based approach to human dermatomes. Clin Anat 21:363–373

    Article  CAS  PubMed  Google Scholar 

  103. Mason P (2005) Ventromedial medulla: pain modulation and beyond. J Comp Neurol 493:2–8

    Article  PubMed  Google Scholar 

  104. Mason P (2005) Deconstructing endogenous pain modulations. J Neurophysiol 94:1659–1663

    Article  CAS  PubMed  Google Scholar 

  105. Mayer EM, Bushnell MC (Hrsg) (2009) Functional pain syndromes: presentation and pathophysiology. IASP, Seattle

  106. Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48:501–524

    Article  CAS  PubMed  Google Scholar 

  107. Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241–289

    Article  CAS  PubMed  Google Scholar 

  108. Mense S (2013) Basic mechanisms of muscle pain. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 620–628

  109. Nicholas AS, Debias DA, Ehrenfeuchter W et al (1985) A somatic component to myocardial infarction. Br Med J (Clin Res Ed) 291:13–17

    Article  Google Scholar 

  110. Öhman L, Simren M (2010) Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol 7:163–173

    Article  PubMed  Google Scholar 

  111. Piedimonte G (2005) Axon reflex and neurogenic inflammation in vagal afferent nerves. In: Undem B, Weinreich D (Hrsg) Advances in vagal afferent neurobiology. CRC, Boca Raton, S 431–464

  112. Randich A, Gebhart GF (1992) Vagal afferent modulation of nociception. Brain Res Rev 17:77–99

    Article  CAS  PubMed  Google Scholar 

  113. Ren K, Dubner R (2009) Descending control mechanisms. In: Basbaum AI, Bushnell MC (Hrsg) Science of pain. Academic Press, San Diego, S 723–762

  114. Ringkamp M, Rja SN, Campbell JN, Meyer RA (2013) Peripheral mechanisms of cutaneous nociception. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 1–30

  115. Robinson DR, Gebhart GF (2008) Inside information: the unique features of visceral sensation. Mol Interv 8:242–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Ruch TC (1965) Pathophysiology of pain. In: Ruch TC, Patton HD (Hrsg) Physiology and biophysics, 19. Aufl. Saunders, Philadelphia, S 345–363

  117. Sandkühler J (2013) Spinal cord plasticity and pain. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 94–110

  118. Schaible H-G (2013) Joint pain – basic mechanisms. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (Hrsg) Wall and Melzack’s textbook of pain, 6. Aufl. Elsevier Saunders, Philadelphia, S 609–619

  119. Schaible HG, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55:5–54

    Article  CAS  PubMed  Google Scholar 

  120. Sengupta JN (2009) Visceral pain: the neurophysiological mechanism. In: Canning BJ, Spina D (Hrsg) Sensory nerves. Handb Exp Pharmacol 194. Springer, Berlin Heidelberg New York Tokio, S 31–74

  121. Sherrington CS (1900) Cutaneous sensation. In: Schäfer EA (Hrsg) Textbook of physiology, Bd 2. Young J. Pentland, Edinburgh, S 920–1001

  122. Sincleir DC, Weddell G, Feindel WH (1948) Referred pain and associated phenomena. Brain 71:184–211

    Article  Google Scholar 

  123. Spike RC, Puskar Z, Andrew D, Todd AJ (2003) A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 18:2433–2448

    Article  CAS  PubMed  Google Scholar 

  124. Sugiura Y, Terui N, Hosoa Y (1989) Differences in the distribution of central terminals between visceral and somatic unmyelinated primary afferent fibers. J Neurophysiol 62:834–847

    CAS  PubMed  Google Scholar 

  125. Sugiura Y, Terui N, Hosoya Y et al (1993) Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 332:315–325

    Article  CAS  PubMed  Google Scholar 

  126. Treede RD, Apkarian AV (2009) Nociceptive processing in the cerebral cortex. In: Basbaum AI, Bushnell MC (Hrsg) Science of pain. Academic Press, San Diego, S 669–698

  127. Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79:105–111

    Article  CAS  PubMed  Google Scholar 

  128. Udem B, Weinreich D (Hrsg) (2005) Advance in vagal afferent neurobiology. CRC, Boca Raton

  129. Vecchiet L, Albe-Fessard D, Lindblom U, Giamberardino MA (Hrsg) (1993) New trends in referred pain and hyperalgesia. Elsevier, Amsterdam

  130. Wall PD, Woolf CJ (1984) Muscle but not cutaneous C-afferent input produces prolonged increases in the excitability of the flexion reflex in the rat. J Physiol 356:443–458

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Wessely S, Nimnuan C, Sharpe M (1999) Functional somatic syndromes: one or many? Lancet 354:936–939

    Article  CAS  PubMed  Google Scholar 

  132. Wilder-Smith CH (2011) The balancing act: endogenous modulation of pain in functional gastrointestinal disorders. Gut 60:1589–1599

    Article  PubMed  Google Scholar 

  133. Williamson JW, Nobrega AC, McColl R et al (1997) Activation of the insular cortex during dynamic exercise in humans. J Physiol 503:277–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Willis WD, Al Chaer ED, Quast MJ, Westlund KN (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci U S A 96:7675–7679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Willis WD Jr, Zhang X, Honda CN, Giesler GJ Jr (2002) A critical review of the role of the proposed VMpo nucleus in pain. J Pain 3:79–94

    Article  PubMed  Google Scholar 

  136. Woolf CJ, Wall PD (1986) Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci 6:1433–1442

    CAS  PubMed  Google Scholar 

  137. Xu L, Gebhart GF (2008) Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 99:244–253

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. Mit Unterstützung der Deutschen Forschungsgemeinschaft. W. Jänig gibt an, dass kein Interessenkonflikt besteht. Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jänig.

Additional information

Diese Publikation ist eine aktualisierte Version von Jänig W, Häbler HJ (2002) Physiologie und Pathophysiologie viszeraler Schmerzen. Schmerz 16:429–446.

Zusatzmaterial online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jänig, W. Neurobiologie viszeraler Schmerzen. Schmerz 28, 233–251 (2014). https://doi.org/10.1007/s00482-014-1402-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-014-1402-x

Schlüsselwörter

Keywords

Navigation