Skip to main content
Log in

Zentrale Schmerzverarbeitung bei funktionellen somatischen Syndromen

CNS processing of pain in functional somatic syndromes

  • Schwerpunkt
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Funktionelle Schmerzsyndrome sind in der Regel gekennzeichnet durch eine erhöhte lokale oder generalisierte Schmerzempfindlichkeit, spontane Schmerzen und eine Vielzahl variabler begleitender Symptome. Die Einteilung oder Zuordnung der Syndrome bezieht sich meist auf den Ort der Hauptbeschwerden oder das Hauptsymptom, eine Überlappung der Symptomatik findet sich jedoch häufig. Weitere Hinweise für eine mögliche Beteiligung des zentralen Nervensystems (ZNS) sind häufige komorbide affektive Störungen, Beeinträchtigungen der Kognition, Veränderungen der neuroendokrinen Funktion und eine Dysregulation des autonomen Nervensystems, wobei diese Störungen immer nur bei einem Teil der Betroffenen vorliegen. Ergebnisse der funktionellen Bildgebung liefern weitestgehend plausible Korrelate für die geklagten subjektiven Beschwerden und weisen auf eine zentrale Augmentation in der Schmerzverarbeitung und anderen sensorischen Systemen einschließlich des postulierten Systems der interozeptiven Regulation hin. In der pathophysiologischen Zuordnung dieser Augmentation gibt es keinen einheitlichen Befund, die Bedeutung peripherer Faktoren bleibt unklar, ebenso wie die genaue Rolle spinaler und supraspinaler Mechanismen. Kognitive und affektive Faktoren beeinflussen die Schmerzverarbeitung, erklären aber die beschriebene Augmentation nicht. Beim Fibromyalgiesyndrom (FMS), beim chronischen Rückenschmerz und dem Reizdarmsyndrom gibt es Hinweise auf eine Dysfunktion der deszendierenden Hemmung. Longitudinale Studien sind notwendig, um die Kausalität der beschriebenen Zusammenhänge und eine primäre Störung im ZNS zu sichern. Aktuelle Methoden (VBM, H-MRS) haben strukturelle und lokale metabolische Veränderungen des ZNS bei vielen der Syndrome nachgewiesen, die Konsequenz und klinische Relevanz bleiben derzeit noch offen. Neue theoretische Konzepte bieten einen Rahmen, um interdisziplinäre, prospektive und hypothesengetriebene Forschungsansätze zu entwickeln, um das ganze Potenzial der Methoden der funktionellen Bildgebung zu nutzen.

Abstract

Functional pain syndromes usually are characterized by a local or generalized increase in pain sensitivity, spontaneous ongoing pain, and a variety of other common symptoms. Classification or definition of a syndrome is usually somewhat arbitrarily based on the predominantly affected body region or a main symptom, resulting in significant overlap between conditions. Support for the involvement of the central nervous system (CNS) comes from the frequent comorbidity of affective disorders and symptomatology, disturbances in cognitive function, changes in neuroendocrine function, and dysregulation of the autonomic nervous system, although only subgroups of patients are affected. Findings of neuroimaging studies in functional pain syndromes typically reveal plausible correlates for the patients’ subjective complaints and indicate a central augmentation in pain processing but also in other sensory systems including a postulated interoceptive system. The pathophysiology of this augmentation is not clear, and the importance of peripheral input remains unresolved, as well as the contribution of spinal and supraspinal mechanisms. Affective and cognitive factors clearly influence pain processing in these syndromes, but do not fully explain the observed augmentation. For FMS, chronic low back pain, and irritable bowel syndrome a dysfunction of the descending inhibitory systems is supported by these findings. However, longitudinal studies are needed to confirm the causality of the reported associations and to establish a primary role of the CNS in these syndromes. Current techniques like VBM and H-MRS have revealed potential yet highly variable structural abnormalities of the CNS in several of the syndromes, but clinical relevance and conclusions from these studies remain far from clear. New theoretical concepts should drive prospective and interdisciplinary research based on well-defined hypotheses to use the full potential of the current neuroimaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Ablin K, Clauw DJ (2009) From fibrositis to functional somatic syndromes to a bell-shaped curve of pain and sensory sensitivity: evolution of a clinical construct. Rheum Dis Clin North Am 35(2):233–251

    Article  PubMed  Google Scholar 

  2. Adiguzel O, Kaptanoglu E, Turgut B et al (2004) The possible effect of clinical recovery on regional cerebral blood flow deficits in fibromyalgia: a prospective study with semiquantitative SPECT. South Med J 97(7):651–655

    Article  CAS  PubMed  Google Scholar 

  3. Apkarian AV, Bushnell MC, Treede RD et al (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484

    Article  PubMed  Google Scholar 

  4. Apkarian AV, Sosa Y, Sonty S et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  CAS  PubMed  Google Scholar 

  5. Baliki MN, Chialvo DR, Geha PY et al (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    Article  CAS  PubMed  Google Scholar 

  6. Baliki MN, Geha PY, Apkarian AV et al (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403

    Article  CAS  PubMed  Google Scholar 

  7. Baliki MN, Geha PY, Jabakhanji R et al (2008) A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol Pain 4:47

    Article  PubMed  Google Scholar 

  8. Burgmer M, Gaubitz M, Konrad C et al (2009) Decreased gray matter volumes in the cingulo-frontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med 71(5):566–573

    Article  PubMed  Google Scholar 

  9. Burgmer M, Pogatzki-Zahn E, Gaubitz M et al (2009) Altered brain activity during pain processing in fibromyalgia. Neuroimage 44(2):502–508

    Article  PubMed  Google Scholar 

  10. Clauw DJ, Williams D, Lauerman W et al (1999) Pain sensitivity as a correlate of clinical status in individuals with chronic low back pain. Spine 24(19):2035–2041

    Article  CAS  PubMed  Google Scholar 

  11. Cook DB, Lange G, Ciccone DS et al (2004) Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 31(2):364–378

    PubMed  Google Scholar 

  12. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13(4):500–505

    Article  CAS  PubMed  Google Scholar 

  13. Derbyshire SW, Jones AK, Creed F et al (2002) Cerebral responses to noxious thermal stimulation in chronic low back pain patients and normal controls. Neuroimage 16(1):158–168

    Article  CAS  PubMed  Google Scholar 

  14. Derbyshire SW, Whalley MG, Oakley DA (2009) Fibromyalgia pain and its modulation by hypnotic and non-hypnotic suggestion: an fMRI analysis. Eur J Pain 13(5):542–550

    Article  PubMed  Google Scholar 

  15. Di Piero V, Jones AK, Iannotti F et al (1991) Chronic pain: a pet study of the central effects of percutaneous high cervical cordotomy. Pain 46(1):9–12

    Article  Google Scholar 

  16. Diatchenko L, Nackley AG, Slade GD et al (2006) Idiopathic pain disorders – pathways of vulnerability. Pain 123(3):226–230

    Article  PubMed  Google Scholar 

  17. Dohrenbusch R (2001) Are patients with fibromyalgia „hypervigilant“? Schmerz 15(1):38–47

    Article  CAS  PubMed  Google Scholar 

  18. Eich W, Hauser W, Friedel E et al (2008) Definition, classification and diagnosis of fibromyalgia syndrome. Schmerz 22(3):255–266

    Article  CAS  PubMed  Google Scholar 

  19. El-Gabalawy H, Ryner L (2008) Central nervous system abnormalities in fibromyalgia: assessment using proton magnetic resonance spectroscopy. J Rheumatol 35(7):1242–1244

    PubMed  Google Scholar 

  20. Emad Y, Ragab Y, Zeinhom F et al (2008) Hippocampus dysfunction may explain symptoms of fibromyalgia syndrome. A study with single-voxel magnetic resonance spectroscopy. J Rheumatol 35(7):1371–1377

    CAS  PubMed  Google Scholar 

  21. Geisser ME, Casey KL, Brucksch CB et al (2003) Perception of noxious and innocuous heat stimulation among healthy women and women with fibromyalgia: association with mood, somatic focus and catastrophizing. Pain 102(3):243–250

    Article  PubMed  Google Scholar 

  22. Geisser ME, Glass JM, Rajcevska LD et al (2008) A psychophysical study of auditory and pressure sensitivity in patients with fibromyalgia and healthy controls. J Pain 9(5):417–422

    Article  PubMed  Google Scholar 

  23. Giesecke T, Gracely RH, Clauw DJ et al (2006) Central pain processing in chronic low back pain: Evidence for reduced pain inhibition. Schmerz 20(5):411–417

    Article  CAS  PubMed  Google Scholar 

  24. Giesecke T, Gracely RH, Grant MA et al (2004) Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 50(2):613–623

    Article  PubMed  Google Scholar 

  25. Giesecke T, Gracely RH, Williams DA et al (2005) The relationship between depression, clinical pain, and experimental pain in a chronic pain cohort. Arthritis Rheum 52(5):1577–1584

    Article  PubMed  Google Scholar 

  26. Giesecke T, Williams DA, Harris RE et al (2003) Subgrouping of fibromyalgia patients on the basis of pressure-pain thresholds and psychological factors. Arthritis Rheum 48(10):2916–2922

    Article  PubMed  Google Scholar 

  27. Gracely RH, Geisser ME, Giesecke T et al (2004) Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 127:1–9

    Article  Google Scholar 

  28. Gracely RH, Petzke F, Wolf JM et al (2002) Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 46(5):1333–1343

    Article  PubMed  Google Scholar 

  29. Guedj E, Cammilleri S, Colavolpe C et al (2007) Follow-up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD-SPECT. Eur J Nucl Med Mol Imaging 34(12):2115–2119

    Article  CAS  PubMed  Google Scholar 

  30. Guedj E, Cammilleri S, Colavolpe C et al (2007) Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia. Eur J Nucl Med Mol Imaging 34(8):1274–1279

    Article  PubMed  Google Scholar 

  31. Guedj E, Cammilleri S, Niboyet J et al (2008) Clinical correlate of brain SPECT perfusion abnormalities in fibromyalgia. J Nucl Med 49(11):1798–1803

    Article  PubMed  Google Scholar 

  32. Guedj E, Taieb D, Cammilleri S et al (2007) 99mTc-ECD brain perfusion SPECT in hyperalgesic fibromyalgia. Eur J Nucl Med Mol Imaging 34(1):130–134

    Article  PubMed  Google Scholar 

  33. Gündel H, Valet M, Sorg C et al (2008) Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 137:413–421

    Article  PubMed  Google Scholar 

  34. Gur A, Karakoc M, Erdogan S et al (2002) Regional cerebral blood flow and cytokines in young females with fibromyalgia. Clin Exp Rheumatol 20(6):753–760

    CAS  PubMed  Google Scholar 

  35. Harris RE, Clauw DJ, Scott DJ et al (2007) Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 27(37):10000–10006

    Article  CAS  PubMed  Google Scholar 

  36. Harris RE, Sundgren PC, Craig AD et al (2009) Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum 60(10):3146–3152

    Article  CAS  PubMed  Google Scholar 

  37. Harris RE, Sundgren PC, Pang Y et al (2008) Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum 58(3):903–907

    Article  CAS  PubMed  Google Scholar 

  38. Hauser W, Bernardy K, Arnold B (2006) Fibromyalgia – a somatoform (pain) disorder? Schmerz 20(2):128–139

    Article  CAS  PubMed  Google Scholar 

  39. Hollins M, Harper D, Gallagher S et al (2009) Perceived intensity and unpleasantness of cutaneous and auditory stimuli: an evaluation of the generalized hypervigilance hypothesis. Pain 141(3):215–221

    Article  PubMed  Google Scholar 

  40. Hsieh JC, Stahle-Backdahl M, Hagermark O et al (1996) Traumatic nociceptive pain activates the hypothalamus and the periaqueductal gray: a positron emission tomography study. Pain 64(2):303–314

    Article  CAS  PubMed  Google Scholar 

  41. Hsu MC, Harris RE, Sundgren PC et al (2009) No consistent difference in gray matter volume between individuals with fibromyalgia and age-matched healthy subjects when controlling for affective disorder. Pain 143(3):262–267

    Article  PubMed  Google Scholar 

  42. Iadarola MJ, Max MB, Berman KF et al (1995) Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 63(1):55–64

    Article  CAS  PubMed  Google Scholar 

  43. Jensen KB, Kosek E, Petzke F et al (2009) Evidence of dysfunctional pain inhibition in fibromyalgia reflected in rACC during provoked pain. Pain 144(1-2):95–100

    Google Scholar 

  44. Kato K, Sullivan PF, Evengard B et al (2009) A population-based twin study of functional somatic syndromes. Psychol Med 39(3):497–505

    Article  CAS  PubMed  Google Scholar 

  45. Koeppe C, Schneider C, Thieme K et al (2004) The influence of the 5-HT3 receptor antagonist tropisetron on pain in fibromyalgia: a functional magnetic resonance imaging pilot study. Scand J Rheumatol Suppl 119:24–27

    Article  CAS  PubMed  Google Scholar 

  46. Kuchinad A, Schweinhardt P, Seminowicz DA et al (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27(15):4004–4007

    Article  CAS  PubMed  Google Scholar 

  47. Kwiatek R, Barnden L, Tedman R et al (2000) Regional cerebral blood flow in fibromyalgia: single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis Rheum 43(12):2823–2833

    Article  CAS  PubMed  Google Scholar 

  48. Landgrebe M, Barta W, Rosengarth K et al (2008) Neuronal correlates of symptom formation in functional somatic syndromes: a fMRI study. Neuroimage 41(4):1336–1344

    Article  PubMed  Google Scholar 

  49. Luerding R, Weigand T, Bogdahn U et al (2008) Working memory performance is correlated with local brain morphology in the medial frontal and anterior cingulate cortex in fibromyalgia patients: structural correlates of pain-cognition interaction. Brain 131(Pt 12):3222–3231

    Article  CAS  PubMed  Google Scholar 

  50. Lutz J, Jager L, Quervain D de et al (2008) White and gray matter abnormalities in the brain of patients with fibromyalgia: a diffusion-tensor and volumetric imaging study. Arthritis Rheum 58(12):3960–3969

    Article  PubMed  Google Scholar 

  51. May A (2008) Chronic pain may change the structure of the brain. Pain 137(1):7–15

    Article  PubMed  Google Scholar 

  52. Mayer EA, Bushnell MC (2009) Functional pain syndromes: presentation and pathophysiology. IASP, Seattle

  53. Mayer EA, Naliboff BD, Craig AD (2006) Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 131(6):1925–1942

    Article  PubMed  Google Scholar 

  54. Mountz JM, Bradley LA, Modell JG et al (1995) Fibromyalgia in women. Abnormalities of regional cerebral blood flow in the thalamus and the caudate nucleus are associated with low pain threshold levels. Arthritis Rheum 38:926–938

    Article  CAS  PubMed  Google Scholar 

  55. Petrou M, Harris RE, Foerster BR et al (2008) Proton MR spectroscopy in the evaluation of cerebral metabolism in patients with fibromyalgia: comparison with healthy controls and correlation with symptom severity. AJNR Am J Neuroradiol 29(5):913–918

    Article  CAS  PubMed  Google Scholar 

  56. Petrovic P, Kalso E, Petersson KM et al (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295(5560):1737–1740

    Article  CAS  PubMed  Google Scholar 

  57. Petzke F, Clauw DJ, Ambrose K et al (2003) Increased pain sensitivity in fibromyalgia: effects of stimulus type and mode of presentation. Pain 105(3):403–413

    Article  PubMed  Google Scholar 

  58. Petzke F, Gracely RH, Park KM et al (2003) What do tender points measure? Influence of distress on 4 measures of tenderness. J Rheumatol 30(3):567–574

    PubMed  Google Scholar 

  59. Pujol J, Lopez-Sola M, Ortiz H et al (2009) Mapping brain response to pain in fibromyalgia patients using temporal analysis of FMRI. PLoS ONE 4(4):e5224

    Article  PubMed  Google Scholar 

  60. Rapps N, Van Oudenhove L, Enck P et al (2008) Brain imaging of visceral function in healthy volunteers and IBS patients. J Psychosom Res 64:599–604

    Article  PubMed  Google Scholar 

  61. Schmidt-Wilcke T (2008) Variations in brain volume and regional morphology associated with chronic pain. Curr Rheumatol Rep 10(6):467–474

    Article  PubMed  Google Scholar 

  62. Schmidt-Wilcke T, Leinisch E, Ganssbauer S et al (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1–2):89–97

    Google Scholar 

  63. Schmidt-Wilcke T, Luerding R, Weigand T et al (2007) Striatal grey matter increase in patients suffering from fibromyalgia – a voxel-based morphometry study. Pain 132(Suppl 1):S109–S116

    Article  PubMed  Google Scholar 

  64. Smythe HA (2009) Explaining medically unexplained symptoms: widespread pain. J Rheumatol 36(4):679–683

    Article  PubMed  Google Scholar 

  65. Sommer C, Hauser W, Gerhold K et al (2008) Etiology and pathophysiology of fibromyalgia syndrome and chronic widespread pain. Schmerz 22(3):267–282

    Article  CAS  PubMed  Google Scholar 

  66. Staud R, Craggs JG, Perlstein WM et al (2008) Brain activity associated with slow temporal summation of C-fiber evoked pain in fibromyalgia patients and healthy controls. Eur J Pain 12(8):1078–1089

    Article  PubMed  Google Scholar 

  67. Stoeter P, Bauermann T, Nickel R et al (2007) Cerebral activation in patients with somatoform pain disorder exposed to pain and stress. An fMRI study. Neuroimage 36:418–430

    Article  CAS  PubMed  Google Scholar 

  68. Sundgren PC, Petrou M, Harris RE et al (2007) Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad Radiol 14(7):839–846

    Article  PubMed  Google Scholar 

  69. Thieme K, Hauser W, Batra A et al (2008) Psychotherapy in patients with fibromyalgia syndrome. Schmerz 22(3):295–302

    Article  CAS  PubMed  Google Scholar 

  70. Usui C, Doi N, Nishioka M et al (2006) Electroconvulsive therapy improves severe pain associated with fibromyalgia. Pain 121(3):276–280

    Article  PubMed  Google Scholar 

  71. Valet M, Gundel H, Sprenger T et al (2009) Patients with pain disorder show gray-matter loss in pain-processing structures: a voxel-based morphometric study. Psychosom Med 71(1):49–56

    Article  PubMed  Google Scholar 

  72. Walitt B, Roebuck-Spencer T, Esposito G et al (2007) The effects of multidisciplinary therapy on positron emission tomography of the brain in fibromyalgia: a pilot study. Rheumatol Int 27(11):1019–1024

    Article  PubMed  Google Scholar 

  73. Wik G, Fischer H, Bragee B et al (2003) Retrosplenial cortical activation in the fibromyalgia syndrome. Neuroreport 14(4):619–621

    Article  PubMed  Google Scholar 

  74. Wolfe F, Smythe HA, Yunus MB et al (1990) The American college of rheumatology 1990 criteria for the classification of fibromyalgia. Report of the multicenter criteria committee. Arthritis Rheum 33(2):160–172

    Article  CAS  PubMed  Google Scholar 

  75. Wood PB, Glabus MF, Simpson R et al (2009) Changes in gray matter density in fibromyalgia: correlation with dopamine metabolism. J Pain 10(6):609–618

    CAS  PubMed  Google Scholar 

  76. Wood PB, Patterson JC 2nd, Sunderland JJ et al (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8(1):51–58

    Article  CAS  PubMed  Google Scholar 

  77. Wood PB, Schweinhardt P, Jaeger E et al (2007) Fibromyalgia patients show an abnormal dopamine response to pain. Eur J Neurosci 25(12):3576–3582

    Article  PubMed  Google Scholar 

  78. Yunus MB (2007) Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin Arthritis Rheum 36(6):339–356

    Article  PubMed  Google Scholar 

  79. Yunus MB, Young CS, Saeed SA et al (2004) Positron emission tomography in patients with fibromyalgia syndrome and healthy controls. Arthritis Rheum 51(4):513–518

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Petzke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzke, F. Zentrale Schmerzverarbeitung bei funktionellen somatischen Syndromen. Schmerz 24, 146–155 (2010). https://doi.org/10.1007/s00482-010-0903-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-010-0903-5

Schlüsselwörter

Keywords

Navigation