Skip to main content

Advertisement

Log in

Analyzing the long-term variability and trend of aridity in India using non-parametric approach

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Aridity is a climatic phenomenon characterized by shortage of water availability in a given time and space resulting in low moisture and reduced carrying capacity of ecosystems. It is represented by a numerical indicator known as Aridity Index (AI), a function of rainfall and temperature. Aridification is a slow and steady effect of climate change and assessing its spread and change is vital in context of global climatic variations. Aridity is predominantly significant for agrarian countries like India, where a slight rise in drylands area can have a significant impact on the economy and community sustenance. AI is an inclusive indicator of climatic conditions in most arid and semi-arid regions. It helps in identifying and interpreting large scale trend in temperature and precipitation; and thus, classifying region into different climatic classes. The present study assessed long-term AI based on precipitation and temperature data obtained from the India Meteorological Department at the resolution of 1 × 1 degree for years 1969–2017. AI is estimated as a ratio of mean precipitation to mean potential evapotranspiration, calculated using Thornthwaite method. The results highlight the trend of aridity over pan-India with Innovative Trend Analysis and Mann–Kendall test. The study concludes that there is a relatively slow, however steadily progressive drier conditions being established in most of the regions. A shift from ‘Semi-arid’ towards ‘Arid’ class appeared in central mainland. The north-eastern Himalaya showed decrease in humid conditions (‘Humid’ to ‘Sub-humid’). The study implies that there is a rising aridity trend over the years due to changing climatic conditions. The shifts in aridity can have serious implications on agriculture, long-term water resource utilization and land use management plans. Our results have scope for future landscape management studies in drylands and better adaptation methods in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aadhar S, Mishra V (2018) Impact of climate change on drought frequency over India. Book climate change and water resources in India. Ministry of Environment Forest and Climate Change (MoEF&CC), Government of India, pp 117–129

    Google Scholar 

  • Abiye OE, Matthew OJ, Sunmonu LA, Babatunde OA (2019) Potential evapotranspiration trends in West Africa from 1906 to 2015. SN Appl Sci 1(11):1–14

    Article  Google Scholar 

  • Ahmad I, Tang D, Wang T, Wang M, Wagan B (2015) Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv Meteorol. https://doi.org/10.1155/2015/431860

    Article  Google Scholar 

  • Ahmed K, Shahid S, Wang X, Nawaz N, Khan N (2019) Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrol Earth Syst Sci 23(7):3081–3096

    Article  Google Scholar 

  • Arora M, Goel NK, Singh P (2005) Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrol Sci J 50(1):81–93

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505

    Article  CAS  Google Scholar 

  • Chai R, Mao J, Chen H, Wang Y, Shi X, Jin M, Wullschleger SD (2021) Human-caused long-term changes in global aridity. Clim Atmos Sci 4(1):1–8

    Google Scholar 

  • Chou SY, Dewabharata A, Zulvia FE, Fadil M (2022) Forecasting building energy consumption using ensemble empirical mode decomposition, wavelet transformation, and long short-term memory algorithms. Energies 15(3):1035

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of north Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045

    Article  Google Scholar 

  • Copeland SM, Bradford JB, Duniway MC, Schuster RM (2017) Potential impacts of overlapping land-use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere 8(5):01823

    Article  Google Scholar 

  • Croitoru AE, Piticar A, Imbroane AM, Burada DC (2013) Spatiotemporal distribution of aridity indices based on temperature and precipitation in the extra-Carpathian regions of Romania. Theoret Appl Climatol 112(3):597–607

    Article  Google Scholar 

  • Dave V, Pandya M, Ghosh R (2019) Identification of desertification hot spot using aridity index. Ann Arid Zone 58(1–2):39–44

    Google Scholar 

  • Deshpande NR, Kulkarni JR (2022) Spatio-temporal variability in the stratiform/convective rainfall contribution to the summer monsoon rainfall in India. Int J Climatol 42(1):481–492

    Article  Google Scholar 

  • Eckstein D, Künzel V, Schäfer L, Winges M (2019) Global climate risk index 2020. Germanwatch, Bonn

    Google Scholar 

  • Emam AR, Kappas M, Hosseini SZ (2015) Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrol Res 46(6):854–870

    Article  Google Scholar 

  • FAO (2021) The impact of disasters and crises on agriculture and food security: 2021. Rome. https://doi.org/10.4060/cb3673en

    Article  Google Scholar 

  • FAO. (2019). Trees, forests and land use in drylands: the first global assessment – Full report. FAO Forestry Paper No. 184. Rome, pp. 184–184

  • Feng S, Fu Q (2013) Expansion of global drylands under a warming climate. Atmos Chem Phys 13(19):10081–10094

    Article  CAS  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566

    Article  Google Scholar 

  • Guhathakurta P, Rajeevan M, (2006) Trends in the rainfall pattern over India. National climate Centre (NCC) Research Report No. 2, 1–23, India. Meteor. Department, Pune

  • Haider S, Adnan S (2014) Classification and assessment of aridity over Pakistan provinces (1960–2009). Int J Environ 3(4):24–35

    Article  Google Scholar 

  • Huang S, Kong J (2016) Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter Forest region of China. ISPRS Int J Geo Inf 5(9):158–163

    Article  Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L, Liu Y, Yu H, He Y, Xie Y, Guan X, Ji M, Lin L, Wang S, Yan H, Wang G (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55(3):719–778

    Article  Google Scholar 

  • IPBES (2018): The IPBES regional assessment report on biodiversity and ecosystem services for Asia and the Pacific. In: Karki M, Senaratna Sellamuttu S, Okayasu S, Suzuki W (eds). Secretariat of the intergovernmental science-policy platform on biodiversity and ecosystem services, Bonn, Germany. p. 612

  • IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J, (eds.). Cambridge University Press

  • IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B, (eds.). Cambridge University Press. In Press

  • Jain SK, Kumar V (2012) Trend analysis of rainfall and temperature data for India. Curr Sci 102:37–49

    Google Scholar 

  • Karmeshu N, (2012) Trend detection in annual temperature & precipitation using the Mann Kendall test–a case study to assess climate change on select states in the northeastern United States. In: Master of Environmental Studies Capstone Projects

  • Kimura R, Moriyama M (2019) Recent trends of annual aridity indices and classification of arid regions with satellite-based aridity indices. Remote Sens Earth Syst Sci 2(2):88–95

    Article  Google Scholar 

  • Kocsis T, Kovács-Székely I, Anda A (2020) Homogeneity tests and non-parametric analyses of tendencies in precipitation time series in Keszthely, Western Hungary. Theoret Appl Climatol 139(3):849–859

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2013) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Vellore R, Mujumdar M, Sanjay J, Goswami BN, Hourdin F, Dufresne JL, Terray P (2015) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47:1007–1027

    Article  Google Scholar 

  • Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (2020) Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MoES), government of India. Springer Nature, p 226

    Book  Google Scholar 

  • Kumar KK, Kumar KR, Pant GB (1997) Pre-monsoon maximum and minimum temperatures over India in relation to the summer monsoon rainfall. Int J Climatol J Royal Meteorol Soc 17(10):1115–1127

    Google Scholar 

  • Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J J Des Sci Hydrol 55(4):484–496

    Article  Google Scholar 

  • Lal M, Nozawa T, Emori S, Harasawa H, Takahashi K, Kimoto M, Abe-Ouchi A, Nakajima T, Takemura T, Numaguti A (2001) Future climate change: Implications for Indian summer monsoon and its variability. Curr Sci 81(9):1196–1207

    Google Scholar 

  • Li Y, Feng A, Liu W, Ma X, Dong G (2017) Variation of aridity index and the role of climate variables in the Southwest China. Water 9(10):743–759

    Article  Google Scholar 

  • Lickley M, Solomon S (2018) Drivers, timing and some impacts of global aridity change. Environ Res Lett 13(10):104010

    Article  Google Scholar 

  • Maharana P, Agnihotri R, Dimri AP (2021) Changing Indian monsoon rainfall patterns under the recent warming period 2001–2018. Clim Dyn 57:2581–2593

    Article  Google Scholar 

  • Mallya G, Mishra V, Niyogi D, Tripathi S, Govindaraju RS (2016) Trends and variability of droughts over the Indian monsoon region. Weather Clim Extrem 12:43–68

    Article  Google Scholar 

  • Marani-Barzani M, Eslamian S, Amoushahi-Khouzani M, Gandomkar A, Rajaei-Rizi F, Kazemi M, Dehghan S, Singh VP, Norouzi H, Dastgerdi HRS, Sadri A, Askari KOA, Dalezios NR, Soltani M, Salleh KBO, Yihdego Y, Askari Z (2017) Assessment of aridity using geographical information system in Zayandeh-Roud Basin, Isfahan, Iran. Int J Min Sci (IJMS) 3(2):49–61

    Google Scholar 

  • Miseckaite O, Čadro S, Tunguz V, Lukashevich V, Šimunić I, Orlović-Leko P, (2018) Climate and aridity change. In: 8TH Asian regional conference (8ARC): irrigation in support of evergreen revolution, Kathmandu, Nepal, pp. 143–152

  • Mishra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3(1):153–165

    Article  Google Scholar 

  • Mishra V (2020) Relative contribution of precipitation and air temperature on dry season drying in India, 1951–2018. J Geophys Res Atmos 125(15):e2020JD032998

    Article  Google Scholar 

  • Mishra AK, Özger M, Singh VP (2009) An entropy-based investigation into the variability of precipitation. J Hydrol 370(1–4):139–154

    Article  Google Scholar 

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  • Mondal A, Khare D, Kundu S (2015) Spatial and temporal analysis of rainfall and temperature trend of India. Theoret Appl Climatol 122(1):143–158

    Article  Google Scholar 

  • Mujumdar M, Bhaskar P, Ramarao MVS, Uppara U, Goswami M, Borgaonkar H, Chakraborty S, Ram S, Mishra V, Rajeevan M, Niyogi D (2020) Droughts and floods. Assessment of climate change over the Indian region. Springer, Singapore, pp 117–141

    Chapter  Google Scholar 

  • Mukherjee S, Aadhar S, Stone D, Mishra V (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim Extrem 20:45–53

    Article  Google Scholar 

  • Nag P, Sengupta S (1992) Geography of India. Concept Publishing Company, pp 276–276

    Google Scholar 

  • Nastos PT, Politi N, Kapsomenakis J (2013) Spatial and temporal variability of the aridity index in Greece. Atmos Res 119:140–152

    Article  Google Scholar 

  • Nath R, Nath D, Li Q, Chen W, Cui X (2017) Impact of drought on agriculture in the Indo-Gangetic Plain, India. Adv Atmos Sci 34(3):335–346

    Article  Google Scholar 

  • Nepal S, Shrestha AB (2015) Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra River basins: a review of the literature. Int J Water Resour Dev 31(2):201–218

    Article  Google Scholar 

  • Nouri M, Bannayan M (2019) Spatiotemporal changes in aridity index and reference evapotranspiration over semi-arid and humid regions of Iran: trend, cause, and sensitivity analyses. Theoret Appl Climatol 136(3):1073–1084

    Article  Google Scholar 

  • Nyamtseren M, Feng Q, Deo R (2018) A comparative study of temperature and precipitation-based aridity indices and their trends in Mongolia. Int J Environ Res 12(6):887–899

    Article  Google Scholar 

  • Ochieng J, Kirmi L, Mathenge M (2016) Effects of climate variability and change on agricultural production–the case of small-scale farmers in Kenny. NJAS Wagening J Life Sci 77:71–78

    Article  Google Scholar 

  • Pal I, Al-Tabbaa A (2010) Regional changes in extreme monsoon rainfall deficit and excess in India. Dyn Atmos Oceans 49(2–3):206–214

    Article  Google Scholar 

  • Patra JP, Mishra A, Singh R, Raghuwanshi NS (2012) Detecting rainfall trends in twentieth century (1871–2006) over Orissa state, India. Clim Change 111(3):801–817

    Article  Google Scholar 

  • Pour SH, Abd Wahab AK, Shahid S (2020) Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmos Res 233:104704

    Article  Google Scholar 

  • Prabhakar AK, Singh KK, Lohani AK, Chandniha SK (2019) Assessment of regional-level long-term gridded rainfall variability over the Odisha state of India. Appl Water Sci 9(4):1–15

    Article  Google Scholar 

  • Prăvălie R, Patriche C, Borrelli P, Panagos P, Roca B, Dumitraşcu M, Bandoc G (2021) Arable lands under the pressure of multiple land degradation processes. Global Perspect Environ Res 194:110697

    Google Scholar 

  • Praveen B, Talukdar S, Mahato S, Mondal J, Sharma P, Islam ARMT, Rahman A (2020) Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 10(1):1–21

    Article  Google Scholar 

  • Radhakrishnan K, Sivaraman I, Jena SK, Sarkar S, Adhikari S (2017) A climate trend analysis of temperature and rainfall in India. Clim Change Environ Sustain 5(2):146–153

    Article  Google Scholar 

  • Raju BMK, Rao KV, Venkateswarlu B, Rao AVMS, Rao CR, Rao VUM, Rao BB, Kumar NR, Dhakar R, Swapna N, Latha P (2013) Revisiting climatic classification in India: a district-level analysis. Curr Sci 105(4):492–495

    Google Scholar 

  • Ramachandran A, Praveen D, Jaganathan R, Palanivelu K (2015) Projected and observed aridity and climate change in the east coast of south India under RCP 45. Sci World J 2015:169761

    Article  CAS  Google Scholar 

  • Ramarao MVS, Krishnan R, Sanjay J, Sabin TP (2015) Understanding land surface response to changing South Asian monsoon in a warming climate. Earth Syst Dyn 6(2):569–582

    Article  Google Scholar 

  • Ramarao MVS, Sanjay J, Krishnan R, Mujumdar M, Bazaz A, Revi A (2019) On observed aridity change over the semiarid regions of India in a warming climate. Theoret Appl Climatol 136:693–702

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Sahour H, Vazifedan M, Alshehri F (2020) Aridity trends in the middle east and adjacent areas. Theoret Appl Climatol 142(3):1039–1054

    Article  Google Scholar 

  • Salvati L, Perini L, Sabbi A, Bajocco S (2012) Climate aridity and land use changes: a regional-scale analysis. Geogr Res 50(2):193–203

    Article  Google Scholar 

  • Sanap SD, Pandithurai G, Manoj MG (2015) On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations. Clim Dyn 45:2949–2961

    Article  Google Scholar 

  • Sen Z (2012) Innovative trend analysis methodology. J Hydrol Eng 17(9):1042–1046

    Article  Google Scholar 

  • Senapati MR, Behera B, Mishra SR (2013) Impact of climate change on Indian agriculture & its mitigating priorities. Am J Environ Protect 1(4):109–111

    Article  Google Scholar 

  • Thapliyal V, Kulshrestha SM (1991) Climate changes and trends over India. Mausam 42(4):333–338

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78

    Article  Google Scholar 

  • Trabucco A, Zomer RJ (2018) Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf 10:m9

    Google Scholar 

  • Tsiros IX, Nastos P, Proutsos ND, Tsaousidis A (2020) Variability of the aridity index and related drought parameters in Greece using climatological data over the last century (1990–1997). Atmos Res 240:104914

    Article  Google Scholar 

  • Ullah S, Ahmad K, Sajjad RU, Abbasi AM, Nazeer A, Tahir AA (2019) Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. J Environ Manag 245:348–357

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP) (1992) World atlas of desertification. Edward Arnold London UK 3(4):246–246

    Google Scholar 

  • Verma IJ, Jadhav VN, Erande RS (2008) Recent variations and trends in potential evapotranspiration (PET) over India. Mausam 59(1):119–128

    Article  Google Scholar 

  • Wu H, Qian H (2017) Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int J Climatol 37(5):2582–2592

    Article  Google Scholar 

  • Yadav R, Tripathi SK, Pranuthi G, Dubey SK (2014) Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. J Agrometeorol 16(2):164–171

    Article  Google Scholar 

  • Zarch MAA, Sivakumar B, Sharma A (2015) Assessment of global aridity change. J Hydrol 520:300–313

    Article  Google Scholar 

  • Zhang X, Zhang L, Zhao J, Rustomji P, Hairsine P (2008) Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res 44(7)

  • Zhang C, Yang Y, Yang D, Wu X (2021) Multidimensional assessment of global dryland changes under future warming in climate projections. J Hydrol 592:125618

    Article  CAS  Google Scholar 

Download references

Funding

This research received no funding grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

AC collected the data, analyzed and wrote the initial draft; SM analyzed the data and wrote part of manuscript; PSR finalized the manuscript; DNP conceptualized and revised the manuscript; PJK conceptualized, supervised and revised the manuscript.

Corresponding author

Correspondence to P. K. Joshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A., Mahato, S., Roy, P.S. et al. Analyzing the long-term variability and trend of aridity in India using non-parametric approach. Stoch Environ Res Risk Assess 37, 3837–3854 (2023). https://doi.org/10.1007/s00477-023-02483-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-023-02483-4

Keywords

Navigation