Skip to main content

Advertisement

Log in

Hydrological and flood hazard assessment using a coupled modelling approach for a mountainous catchment in Portugal

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Floods may lead to destruction of property, to damage to the environment and ultimately to loss of lives. Although it is not possible to avoid them, they are enhanced by human activities that increase the probability of occurrence of these natural events. Preliminary flood risk assessment and determination of areas of potential significant flood risk is mandatory according to the European Floods Directive (2007). In order to meet the established legislation, a methodology was developed that couples two modelling approaches: the Hydrological Simulation Program—FORTRAN (HSPF) and IBER. A target watershed, with complex orography and known to be vulnerable to flood hazards, is selected: the Vez River (northern Portugal). The performance of the HSPF model, driven by a climate gridded dataset, was assessed, followed by the reconstruction of the flow rate in the catchment for the period from 1950 to 2015. The results hint at an agreement between simulated and observed daily flow rates, with high coefficient of determination value and of the Nash–Sutcliffe coefficient of efficiency (> 0.7 daily timescale). A satisfactory performance was also found in reproducing flood peak events. An average deviation of 10% was found between observed and simulated flood peaks. The output of HSPF was subsequently used to drive IBER, thus determining flood hazard areas for a 10, 50 and 100-year return periods. The methodology presented here provides basic tools for decision-makers to evaluate hydrologic responses to climate data, namely the determination of flood hazard maps, but also risk assessment, water management, environmental protection and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexandre Diogo P, Nunes JP, Carmona Rodrigues A, et al (2014) Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal. In: EGU general assembly conference abstracts

  • Ames DP, Michaelis C, Anselmo A, et al (2008) MapWindow GIS. In: Encyclopedia of GIS. Springer, pp 633–634

  • Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res Atmos. https://doi.org/10.1029/2010JD015481

    Article  Google Scholar 

  • Bergman MJ, Green W, Donnangelo LJ (2002) Calibration of storm loads in the south Prong watershed, Florida, using BASINS/HSPF, pp 1423–1436

  • Bicknell BR (2000) Basins technical note 6: estimating hydrology and hydraulic parameters for HSPF. US: Environmental Protection Agency

  • Bicknell BR, Imhoff JC, Kittle JL Jr et al (2001) Hydrological Simulation Program—FORTRAN: HSPF version 12 user’s manual. AQUA TERRA Consultants, Mountain View

    Google Scholar 

  • Bladé E, Cea L, Corestein G et al (2014) IBER: herramienta de simulación numérica del flujo en ríos. Rev Int Métodos Numéricos para Cálculo y Diseño en Ing 30:1–10. https://doi.org/10.1016/j.rimni.2012.07.004

    Article  Google Scholar 

  • Bleecker M, DeGloria S, Hutson J et al (1995) Mapping atrazine leaching potential with integrated environmental databases and simulation models. J Soil Water Conserv 50:388–394

    Google Scholar 

  • Bodoque JM, Amérigo M, Díez-Herrero A et al (2016) Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. J Hydrol 541:665–676. https://doi.org/10.1016/j.jhydrol.2016.02.005

    Article  Google Scholar 

  • Brandt SA (2016) Modeling and visualizing uncertainties of flood boundary delineation: algorithm for slope and DEM resolution dependencies of 1D hydraulic models. Stoch Environ Res Risk Assess 30:1677–1690. https://doi.org/10.1007/s00477-016-1212-z

    Article  Google Scholar 

  • Carrubba L (2000) Hydrologic modeling at the watershed scale using NPSM. J Am Water Resour Assoc 36:1237–1246

    Article  Google Scholar 

  • Carvalho-Santos C, Nunes J, Hein L, Honrado J (2016) Modelling hydrological services using SWAT—impacts from forestation scenarios in a transitional Mediterranean climatic watershed. In: 6th ESP annual international conference: making ecosystems services count, Bali, pp 26–30

  • Castillo C, Pérez R, Gómez JA (2014) A conceptual model of check dam hydraulics for gully control: efficiency, optimal spacing and relation with step-pools. Hydrol Earth Syst Sci 18:1705–1721. https://doi.org/10.1111/j.1600-0870.2008.00306.x

    Article  Google Scholar 

  • Conradt T, Roers M, Schroeter K et al (2013) Comparison of the extreme floods of 2002 and 2013 in the German part of the Elbe River basin and their runoff simulation by SWIM-live. Hydrol Und Wasserbewirtschaftung 57:241–245

    Google Scholar 

  • Crawford N (1966) Digital simulation in hydrology: stanford watershed model IV. Stanford University, Technical Report, 39

  • de Moel H, van Alphen J, Aerts J (2009) Flood maps in Europe-methods, availability and use. Nat Hazards Earth Syst Sci 9:289–301

    Article  Google Scholar 

  • Directive (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks

  • Donigian AS (2002) Watershed model calibration and validation: the HSPF experience. Proc Water Environ Fed 2002:44–73

    Article  Google Scholar 

  • Donigian AS, Crawford NH (1976) Modeling nonpoint pollution from the land surface. US Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory

  • Donigian AS, Davis HH (1978) Agricultural runoff management (ARM): users manual. Report EPA–600/3–78–080, US EPA, Athens, Georgia, USA

  • Donigian AS, Huber WC (1991) Modeling of nonpoint source water quality in urban and non-urban areas. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency

  • Donigian AS, Bicknell BR, Imhoff JC (1995) Hydrological simulation program—Fortran (HSPF). Comput Model watershed Hydrol 12:395–442

    Google Scholar 

  • EPA U (2015) BASINS 4.1 (better assessment science integrating point & non-point sources) modeling framework

  • Ferreira ARL, Fernandes LFS, Cortes RMV, Pacheco FAL (2017) Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci Total Environ 583:466–477

    Article  CAS  Google Scholar 

  • Fonseca A, Ames DP, Yang P et al (2014a) Watershed model parameter estimation and uncertainty in data-limited environments. Environ Model Softw 51:84–93. https://doi.org/10.1016/j.envsoft.2013.09.023

    Article  Google Scholar 

  • Fonseca A, Botelho C, Boaventura RAR, Vilar VJP (2014b) Integrated hydrological and water quality model for river management: a case study on Lena River. Sci Total Environ 485:474–489. https://doi.org/10.1016/j.scitotenv.2014.03.111

    Article  CAS  Google Scholar 

  • Fonseca A, Botelho C, Boaventura RAR, Vilar VJP (2015) Global warming effects on faecal coliform bacterium watershed impairments in Portugal. River Res Appl 31:1344–1353. https://doi.org/10.1002/rra.2821

    Article  Google Scholar 

  • Fonseca AR, Sanches Fernandes LF, Fontainhas-Fernandes A et al (2016) From catchment to fish: impact of anthropogenic pressures on gill histopathology. Sci Total Environ 550:972–986. https://doi.org/10.1016/j.scitotenv.2016.01.199

    Article  CAS  Google Scholar 

  • Fonseca AR, Fernandes LFS, Fontainhas-Fernandes A et al (2017) The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: a statistical perspective. Sci Total Environ 599:217–226

    Article  CAS  Google Scholar 

  • Fonseca A, Boaventura RA, Vilar VJ (2018) Integrating water quality responses to best management practices in Portugal. Environ Sci Pollut Res 25(2):1587–1596

    Article  CAS  Google Scholar 

  • Garrote J, Alvarenga FM, Díez-Herrero A (2016) Quantification of flash flood economic risk using ultra-detailed stage–damage functions and 2-D hydraulic models. J Hydrol 541:611–625

    Article  Google Scholar 

  • Hävermark S (2016) Modelling the effects of land use change on a peri-urban catchment in Portugal

  • Haylock M, Hofstra N, Klein Tank A et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos. https://doi.org/10.1029/2008JD010201

    Article  Google Scholar 

  • Hughes DA, Slaughter A (2015) Daily disaggregation of simulated monthly flows using different rainfall datasets in southern Africa. J Hydrol Reg Stud 4:153–171

    Article  Google Scholar 

  • Hummel PR, Kittle Jr JL, Gray MH (2001) WDMUtil-A tool for managing watershed modeling time-series data: user’s manual. US EPA Office of Water, Washington, DC

  • Huza J, Teuling AJ, Braud I et al (2014) Precipitation, soil moisture and runoff variability in a small river catchment (Ardèche, France) during HyMeX Special Observation Period 1. J Hydrol 516:330–342. https://doi.org/10.1016/j.jhydrol.2014.01.041

    Article  Google Scholar 

  • Jayawardena AW (2015) Hydro-meteorological disasters: causes, effects and mitigation measures with special reference to early warning with data driven approaches of forecasting. Proc IUTAM 17:3–12

    Article  Google Scholar 

  • Kilsby CG, Tellier SS, Fowler HJ, Howels TR (2007) Hydrological impacts of climate change on the Tejo and Guadiana Rivers. Hydrol Earth Syst Sci Discuss 11:1175–1189

    Article  Google Scholar 

  • Kohler MA, Nordenson T, Fox W (1955) Evaporation from pans and lakes: US weather bureau research paper 38

  • Kouwen N, Danard M, Bingeman A et al (2005) Case study: watershed modeling with distributed weather model data. J Hydrol Eng 10:23–38

    Article  Google Scholar 

  • Kron W, Steuer M, Löw P, Wirtz A (2012) How to deal properly with a natural catastrophe database – analysis of flood losses. Nat Hazards Earth Syst Sci 12:535–550. https://doi.org/10.5194/nhess-12-535-2012

    Article  Google Scholar 

  • Lian Y, Chan I-C, Singh J et al (2007) Coupling of hydrologic and hydraulic models for the Illinois River Basin. J Hydrol 344:210–222

    Article  Google Scholar 

  • Liu R, Chen Y, Wu J et al (2016) Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: a case study in Bowen Basin, Australia. Stoch Environ Res risk Assess 30:1575–1590. https://doi.org/10.1007/s00477-015-1198-y

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Beguería S, et al (2009) Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal

  • Lowe SA, Doscher R (2003) Modeling of urban watersheds using basins and HSPF. J Environ Hydrol 11

  • Mehta VK, Walter MT, Brooks ES et al (2004) Application of SMR to modeling watersheds in the Catskill Mountains. Environ Model Assess 9:77–89

    Article  Google Scholar 

  • Mendes MP, Ribeiro L, Nascimento J et al (2012) A groundwater perspective on the river basin management plan for central Portugal—developing a methodology to assess the potential impact of N fertilizers on groundwater bodies. Water Sci Technol 66:2162–2169

    Article  CAS  Google Scholar 

  • Merz R, Blöschl G, Humer G (2008) National flood discharge mapping in Austria. Nat Hazards 46:53–72. https://doi.org/10.1007/s11069-007-9181-7

    Article  Google Scholar 

  • Merz B, Aerts J, Arnbjerg-Nielsen K et al (2014) Floods and climate: emerging perspectives for flood risk assessment and management. Nat Hazards Earth Syst Sci 14:1921–1942. https://doi.org/10.5194/nhess-14-1921-2014

    Article  Google Scholar 

  • Mourato S, Moreira M, Corte-Real J (2014) Water availability in southern Portugal for different climate change scenarios subjected to bias correction. J Urban Environ Eng 8(1):109–117

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nied M, Pardowitz T, Nissen K et al (2014) On the relationship between hydro-meteorological patterns and flood types. J Hydrol 519:3249–3262. https://doi.org/10.1016/j.jhydrol.2014.09.089

    Article  Google Scholar 

  • Nied M, Schröter K, Lüdtke S et al (2017) What are the hydro-meteorological controls on flood characteristics? J Hydrol 545:310–326

    Article  Google Scholar 

  • O’Neill BC, Oppenheimer M, Warren R et al (2017) IPCC reasons for concern regarding climate change risks. Nat Clim Chang 7:28–37

    Article  Google Scholar 

  • Obled C, Wendling J, Beven K (1994) The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data. J Hydrol 159:305–333

    Article  Google Scholar 

  • Palmer MD (1981) Some measurements of near surface turbulence in the depth direction and some phytoplankton distribution implications. J Great Lakes Res 7:171–181

    Article  Google Scholar 

  • Palmer MD (2001) Water quality modeling: a guide to effective practice. World bank publications, Washington, DC

    Book  Google Scholar 

  • Pathiraja S, Westra S, Sharma A (2012) Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour Res 48(6). https://doi.org/10.1029/2011WR010997

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, pp 120–145

  • Petan S, Barbosa JLP, Mikos M, Pinto FT (2009) GIS-based RUSLE modelling of Leça River Basin, Northern Portugal, in two different grid scales. In: EGU general assembly conference abstracts, p 9334

  • Reis A, Martinho Lourenço JM, Parker A, Alencoão A (2013) Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal). In: EGU general assembly conference abstracts

  • Riccardi GA (1997) The mathematical modelling of flood propagation for the delineation of flood risk zones. IAHS Publ Proc Reports-Intern Assoc Hydrol Sci 240:355–364

    Google Scholar 

  • Ruiz-Villanueva V, Bladé E, Sánchez-Juny M et al (2014) Two-dimensional numerical modeling of wood transport. J Hydroinformatics 16:1077–1096

    Article  Google Scholar 

  • Santos PP, Reis E (2017) Assessment of stream flood susceptibility: a cross analysis between model results and flood losses. J Flood Risk Management. https://doi.org/10.1111/jfr3.12290

    Article  Google Scholar 

  • Santos M, Santos JA, Fragoso M (2015a) Historical damaging flood records for 1871–2011 in northern Portugal and underlying atmospheric forcings. J Hydrol 530:591–603

    Article  Google Scholar 

  • Santos RMB, Fernandes LFS, Pereira MG et al (2015b) Water resources planning for a river basin with recurrent wildfires. Sci Total Environ 526:1–13

    Article  CAS  Google Scholar 

  • Santos M, Fragoso M, Santos JA (2017a) Regionalization and susceptibility assessment to daily precipitation extremes in mainland Portugal. Appl Geogr 86:128–138

    Article  Google Scholar 

  • Santos M, Santos JA, Fragoso M (2017b) Atmospheric driving mechanisms of flash floods in Portugal. Int J Climatol. https://doi.org/10.1002/joc.5030

    Article  Google Scholar 

  • Schröter K, Kunz M, Elmer F et al (2015) What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol Earth Syst Sci 19:309–327. https://doi.org/10.5194/hess-19-309-2015

    Article  Google Scholar 

  • Schuol J, Abbaspour K (2007) Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecol Modell 201:301–311

    Article  Google Scholar 

  • Shrestha R, Tachikawa Y, Takara K (2004) Performance analysis of different meteorological data and resolutions using MaScOD hydrological model. Hydrol Process 18:3169–3187

    Article  Google Scholar 

  • Silva E, Pereira AC, Estalagem SP et al (2012) Assessing the quality of freshwaters in a protected area within the Tagus river basin district (central Portugal). J Environ Qual 41:1413–1426

    Article  CAS  Google Scholar 

  • Te Chow V (1959) Open channel hydraulics. McGraw-Hill Book Company, Inc, New York

    Google Scholar 

  • Ulbrich U, Brücher T, Fink AH et al (2003a) The central European floods of August 2002: part 1—rainfall periods and flood development. Weather 58:371–377. https://doi.org/10.1256/wea.61.03A

    Article  Google Scholar 

  • Ulbrich U, Brücher T, Fink AH et al (2003b) The central European floods of August 2002: part 2—synoptic causes and considerations with respect to climatic change. Weather 58:434–442. https://doi.org/10.1256/wea.61.03B

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite method. Pearson Education, London

    Google Scholar 

  • Vieira J, Fonseca A, Vilar VJP et al (2012) Water quality in Lis river, Portugal. Environ Monit Assess 184:7125–7140. https://doi.org/10.1007/s10661-011-2485-9

    Article  CAS  Google Scholar 

  • Vieira J, Fonseca A, Vilar VJP et al (2013) Water quality modelling of Lis River, Portugal. Environ Sci Pollut Res 20:508–524. https://doi.org/10.1007/s11356-012-1124-5

    Article  CAS  Google Scholar 

  • Wahren F, Julich S, Nunes J et al (2016) Combining digital soil mapping and hydrological modeling in a data scarce watershed in north-central Portugal. Geoderma 264:350–362

    Article  Google Scholar 

  • Yang P, Ames DP, Fonseca A et al (2014a) What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environ Model Softw 58:48–57. https://doi.org/10.1016/j.envsoft.2014.04.005

    Article  Google Scholar 

  • Yang P, Ames DP, Fonseca A, et al (2014b) Impact of LiDAR-derived DEM resolution on hydrographic features and hydrologic modeling. In: Proceedings—7th international congress on environmental modelling and software: bold visions for environmental modeling, iEMSs 2014

  • Zhang J, Ross M, Trout K, Zhou D (2009) Calibration of the HSPF model with a new coupled FTABLE generation method. Prog Nat Sci 19:1747–1755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the project INTERACT—Integrative Research in Environment, Agro-Chain and Technology, in its research line BEST, NORTE-01-0145-FEDER-000017, co-funded by FEDER/NORTE 2020 (Programa Operacional Regional do Norte 2014/2020). It was also supported by FEDER/COMPETE/POCI – Operational Competitiveness and Internationalization Programme, POCI-01-0145-FEDER-006958, and by FCT—Portuguese Foundation for Science and Technology, UID/AGR/04033/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Fonseca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, A.R., Santos, M. & Santos, J.A. Hydrological and flood hazard assessment using a coupled modelling approach for a mountainous catchment in Portugal. Stoch Environ Res Risk Assess 32, 2165–2177 (2018). https://doi.org/10.1007/s00477-018-1525-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1525-1

Keywords

Navigation