Skip to main content

Advertisement

Log in

Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The source region of Yellow river is an alpine river sensitive to climate changes, but the potential effects of climate change on hydrological regime characteristics and ecological implications are less understood. This study aims to assess the response of the alterations in the flow regimes over the source region of Yellow river to climate change using Soil and Water Integrated Model driven by different Global Circulation Models (GFDL-ESM2M, IPSL-CM5A-LR and MIROC-ESM-CHEM) under three Representative Concentration Pathway emission scenarios (RCP2.6, RCP4.5 and RCP8.5). Indicators of hydrological alteration and River impact index are employed to evaluate streamflow regime alterations at multiple temporal scales. Results show that the magnitude of monthly and annual streamflow except May, the magnitude and duration of the annual extreme, and the number of reversals are projected to increase in the near future period (2020–2049) and far future period (2070–2099) compared to the baseline period (1971–2000). The timing of annual maximum flows is expected to shift backwards. The source region of Yellow river is expected to undergo low change degree as per the scenarios RCP2.6 for both two future periods and under the scenarios RCP4.5 for the near future period, whereas high change degree under RCP4.5 and RCP8.5 in the far period on the daily scale. On the monthly scale, climate changes mainly have effects on river flow magnitude and timing. The basin would suffer an incipient impact alteration in the far period under RCP4.5 and RCP8.5, while low impact in other scenarios. These changes in flow regimes could have several positive impacts on aquatic ecosystems in the near period but more detrimental effects in the far period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrate T, Hubert P, Sighomnou D (2013) A study on hydrological series of the Niger River. Hydrol Sci J 58(2):271–279

    Article  Google Scholar 

  • Aich V, Liersch S, Vetter T, Huang S, Tecklenburg J, Hoffmann P, Koch H, Fournet S, Krysanova V, Müller E (2014) Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth Syst Sci 18(4):1305–1321. doi:10.5194/hess-18-1305-2014

    Article  Google Scholar 

  • Angelina A, Gado Djibo A, Seidou O, Seidou Sanda I, Sittichok K (2015) Changes to flow regime on the Niger River at Koulikoro under a changing climate. Hydrol Sci J 60(10):1709–1723. doi:10.1080/02626667.2014.916407

    Article  Google Scholar 

  • Arthington AH, Olden JD, Balcombe SR, Thoms MC (2010) Multi-scale environmental factors explain fish losses and refuge quality in drying waterholes of Cooper Creek, an Australian arid-zone river. Mar Freshw Res 61(8):842–856. doi:10.1071/MF09096

    Article  CAS  Google Scholar 

  • Bai P, Liu X, Liang K, Liu C (2016) Investigation of changes in the annual maximum flood in the Yellow River basin, China. Quat Int 392:168–177. doi:10.1016/j.quaint.2015.04.053

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303. doi:10.1038/nature04141

    Article  CAS  Google Scholar 

  • Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30(4):492–507

    Article  Google Scholar 

  • Clausen B, Biggs B (2000) Flow variables for ecological studies in temperate streams: groupings based on covariance. J Hydrol 237(3):184–197. doi:10.1016/S0022-1694(00)00306-1

    Article  Google Scholar 

  • Döll P, Zhang J (2010) Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci 14(5):783–799. doi:10.5194/hess-14-783-2010

    Article  Google Scholar 

  • Extence C, Balbi D, Chadd R (1999) River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regul Rivers: Res Manag 15(6):543–574

    Article  Google Scholar 

  • Haghighi AT, Kløve B (2013) Development of a general river regime index (RRI) for intra-annual flow variation based on the unit river concept and flow variation end-points. J Hydrol 503:169–177. doi:10.1016/j.jhydrol.2013.08.041

    Article  Google Scholar 

  • Haghighi AT, Marttila H, Kløve B (2014) Development of a new index to assess river regime impacts after dam construction. Global Planet Change 122:186–196. doi:10.1016/j.gloplacha.2014.08.019

    Article  Google Scholar 

  • Hauer C, Unfer G, Holzmann H, Schmutz S, Habersack H (2013) The impact of discharge change on physical instream habitats and its response to river morphology. Clim Change 116(3–4):827–850. doi:10.1007/s10584-012-0507-4

    Article  Google Scholar 

  • Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction–the ISI-MIP approach. Earth Syst Dyn 4(2):219–236. doi:10.5194/esd-4-219-2013

    Article  Google Scholar 

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3(4):369–373. doi:10.1038/NCLIMATE1716

    Article  Google Scholar 

  • Krysanova V, Hattermann F, Huang S, Hesse C, Vetter T, Liersch S, Koch H, Kundzewicz ZW (2015) Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications. Hydrol Sci J 60(4):606–635. doi:10.1080/02626667.2014.925560

    Article  Google Scholar 

  • Laizé C, Acreman M, Schneider C, Dunbar M, Houghton-Carr H, Flörke M, Hannah D (2014) Projected flow alteration and ecological risk for pan-european rivers. River Res Appl 30(3):299–314. doi:10.1002/rra.2645

    Article  Google Scholar 

  • Lee A, Cho S, Kang DK, Kim S (2014) Analysis of the effect of climate change on the Nakdong river stream flow using indicators of hydrological alteration. J Hydro Environ Res 8(3):234–247. doi:10.1016/j.jher.2013.09.003

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

    Article  Google Scholar 

  • Liu L, Liu Z, Ren X, Fischer T, Xu Y (2011) Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model. Quat Int 244(2):211–220. doi:10.1016/j.quaint.2010.12.001

    Article  Google Scholar 

  • Lobanova A, Stagl J, Vetter T, Hattermann F (2015) Discharge alterations of the Mures River, Romania under ensembles of future climate projections and sequential threats to aquatic ecosystem by the end of the century. Water 7(6):2753–2770. doi:10.3390/w7062753

    Article  CAS  Google Scholar 

  • Magilligan FJ, Nislow KH (2005) Changes in hydrologic regime by dams. Geomorphology 71(1):61–78

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bull Am Meteorol Soc 86(1):39–49

    Article  Google Scholar 

  • Olden JD, Poff N (2003) Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Res Appl 19(2):101–121. doi:10.1002/rra.700

    Article  Google Scholar 

  • Palmer MA, Bely AE, Berg K (1992) Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89(2):182–194. doi:10.1007/BF00317217

    Article  CAS  Google Scholar 

  • Pan B, Wang Z, Li Z, Yu G, Xu M, Zhao N, Brierley G (2013) An exploratory analysis of benthic macroinvertebrates as indicators of the ecological status of the Upper Yellow and Yangtze Rivers. J Geogr Sci 23(5):871–882. doi:10.1007/s11442-013-1050-6

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. Bioscience 47(11):769–784

    Article  Google Scholar 

  • Poff NL, Bledsoe BP, Cuhaciyan CO (2006) Hydrologic variation with land use across the contiguous United States: geomorphic and ecological consequences for stream ecosystems. Geomorphology 79(3):264–285. doi:10.1016/j.geomorph.2006.06.032

    Article  Google Scholar 

  • Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci 104(14):5732–5737. doi:10.1073/pnas.0609812104

    Article  CAS  Google Scholar 

  • Pradhanang SM, Mukundan R, Schneiderman EM, Zion MS, Anandhi A, Pierson DC, Frei A, Easton ZM, Fuka D, Steenhuis TS (2013) Streamflow responses to climate change: analysis of hydrologic indicators in a New York City water supply watershed. JAWRA J Ame Water Resour Assoc 49(6):1308–1326. doi:10.1111/jawr.12086

    Article  Google Scholar 

  • Puig A, Salinas HFO, Borús JA (2016) Recent changes (1973–2014 versus 1903–1972) in the flow regime of the Lower Paraná River and current fluvial pollution warnings in its Delta Biosphere Reserve. Environ Sci Pollut Res 23(12):11471–11492. doi:10.1007/s11356-016-6501-z

    Article  CAS  Google Scholar 

  • Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10(4):1163–1174

    Article  Google Scholar 

  • Richter BD, Davis M, Apse C, Konrad C (2012) A presumptive standard for environmental flow protection. River Res Appl 28(8):1312–1321. doi:10.1002/rra.1511

    Article  Google Scholar 

  • Ritter A, Muñoz-Carpena R (2013) Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol 480:33–45. doi:10.1016/j.jhydrol.2012.12.004

    Article  Google Scholar 

  • Robinson CT, Aebischer S, Uehlinger U (2004) Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J North Am Benthol Soc 23(4):853–867. doi:10.1899/0887-3593(2004)023<0853:IAHROM>2.0.CO;2

    Article  Google Scholar 

  • Shen Y-Q, Zhang X-K, Zhao W-H, Wang H-J (2011) Riaprian plants in the mainstream of the Yellow River: assemblage characteristics and its influencing factors. Acta Hydrobiol Sin 35(1):51–66

    Article  Google Scholar 

  • Stefanidis K, Panagopoulos Y, Psomas A, Mimikou M (2016) Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci Total Environ 573:1492–1502. doi:10.1016/j.scitotenv.2016.08.046

    Article  CAS  Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208. doi:10.1175/JCLI-D-12-00321.1

    Article  Google Scholar 

  • Su F, Zhang L, Ou T, Chen D, Yao T, Tong K, Qi Y (2016) Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob Planet Change 136:82–95. doi:10.1016/j.gloplacha.2015.10.012

    Article  Google Scholar 

  • Sun Q, Miao C, Duan Q (2015) Projected changes in temperature and precipitation in ten river basins over China in 21st century. Int J Climatol 35(6):1125–1141. doi:10.1002/joc.4043

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Townsend C, Doledec S, Scarsbrook M (1997) Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshw Biol 37(2):367–387. doi:10.1046/j.1365-2427.1997.00166.x

    Article  Google Scholar 

  • Vetter T, Huang S, Aich V, Yang T, Wang X, Krysanova V, Hattermann F (2015) Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst Dyn 6(1):17. doi:10.5194/esd-6-17-2015

    Article  Google Scholar 

  • Vogel RM, Sieber J, Archfield SA, Smith MP, Apse CD, Huber-Lee A (2007) Relations among storage, yield, and instream flow. Water Resour Res. doi:10.1029/2006WR005226

    Article  Google Scholar 

  • Wang X, Yang T, Shao Q, Acharya K, Wang W, Yu Z (2012) Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone. Stoch Environ Res Risk Assess 26(3):405–418. doi:10.1007/s00477-011-0535-z

    Article  Google Scholar 

  • Wang W, Xing W, Shao Q, Yu Z, Peng S, Yang T, Yong B, Taylor J, Singh VP (2013) Changes in reference evapotranspiration across the Tibetan Plateau: observations and future projections based on statistical downscaling. J Geophys Res Atmos 118(10):4049–4068. doi:10.1002/jgrd.50393

    Article  Google Scholar 

  • Wang J, Liang Z, Wang D, Liu T, Yang J (2016) Impact of climate change on hydrologic extremes in the Upper Basin of the Yellow River Basin of China. Adv Meteorol. doi:10.1155/2016/1404290

    Article  Google Scholar 

  • Williams J, Renard K, Dyke P (1983) EPIC: a new method for assessing erosion’s effect on soil productivity. J Soil Water Conserv 38(5):381–383

    Google Scholar 

  • Xu Z, Zhao F, Li J (2009) Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quat Int 208(1):62–75. doi:10.1016/j.quaint.2008.09.001

    Article  Google Scholar 

  • Yang T, Zhang Q, Chen YD, Tao X, Cy Xu, Chen X (2008) A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol Process 22(18):3829–3843. doi:10.1002/hyp.6993

    Article  Google Scholar 

  • Yang T, Xu C-Y, Shao Q, Chen X, Lu G-H, Hao Z-C (2010) Temporal and spatial patterns of low-flow changes in the Yellow River in the last half century. Stoch Environ Res Risk Assess 24(2):297–309. doi:10.1007/s00477-009-0318-y

    Article  Google Scholar 

  • Yang T, Hao X, Shao Q, Xu C-Y, Zhao C, Chen X, Wang W (2012) Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Glob Planet Change 80:1–13. doi:10.1016/j.gloplacha.2011.08.006

    Article  Google Scholar 

  • Yang T, Wang C, Yu Z, Xu F (2013) Characterization of spatio-temporal patterns for various GRACE- and GLDAS-born estimates for changes of global terrestrial water storage. Glob Planet Change 109:30–37

    Article  Google Scholar 

  • Yang T, Wang X, Yu Z, Krysanova V, Chen X, Schwartz FW, Sudicky EA (2014) Climate change and probabilistic scenario of streamflow extremes in an alpine region. J Geophys Res Atmos 119(14):8535–8551

    Article  Google Scholar 

  • You Q, Min J, Kang S (2016) Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int J Climatol 36(6):2660–2670. doi:10.1002/joc.4520

    Article  Google Scholar 

  • Zhang Q, Xu CY, Chen YD, Yang T (2009) Spatial assessment of hydrologic alteration across the Pearl River Delta, China, and possible underlying causes. Hydrol Process 23(11):1565–1574. doi:10.1002/hyp.7268

    Article  Google Scholar 

  • Zhang Y, Su F, Hao Z, Xu C, Yu Z, Wang L, Tong K (2015) Impact of projected climate change on the hydrology in the headwaters of the Yellow River basin. Hydrol Process 29(20):4379–4397. doi:10.1002/hyp.10497

    Article  Google Scholar 

  • Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau,China. Glob Planet Change 43(1):19–31. doi:10.1016/j.gloplacha.2004.02.003

    Article  Google Scholar 

  • Zhao G, Hörmann G, Fohrer N, Zhang Z, Zhai J (2010) Streamflow trends and climate variability impacts in Poyang Lake Basin, China. Water Resour Manag 24(4):689–706. doi:10.1007/s11269-009-9465-7

    Article  Google Scholar 

  • Zhao G, Li E, Mu X, Wen Z, Rayburg S, Tian P (2015) Changing trends and regime shift of streamflow in the Yellow River basin. Stoch Environ Res Risk Assess 29(5):1331–1343. doi:10.1007/s00477-015-1058-9

    Article  Google Scholar 

  • Zheng H, Zhang L, Liu C, Shao Q, Fukushima Y (2007) Changes in stream flow regime in headwater catchments of the Yellow River basin since the 1950s. Hydrol Process 21(7):886–893. doi:10.1002/hyp.6280

    Article  Google Scholar 

Download references

Acknowledgements

The work was jointly supported by grants from the National Natural Science Foundation of China (41561134016, 41371051, 51421006), a key grant of Chinese Academy of Sciences (KZZD-EW-12), and a grant from Ministry of Water Resources (20151032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, T., Yang, T., Xu, CY. et al. Assessment of the impact of climate change on flow regime at multiple temporal scales and potential ecological implications in an alpine river. Stoch Environ Res Risk Assess 32, 1849–1866 (2018). https://doi.org/10.1007/s00477-017-1475-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1475-z

Keywords

Navigation