Skip to main content
Log in

Spatio-temporal heterogeneity and changes in extreme precipitation over eastern Himalayan catchments India

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study draws attention on the extreme precipitation changes over the eastern Himalayan region of the Teesta river catchment. To explore the precipitation variability and heterogeneity, observed (1979–2005) and statistically downscaled (2006–2100) Coupled Model Intercomparison Project Phase Five earth system model global circulation model daily precipitation datasets are used. The trend analysis is performed to analyze the long-term changes in precipitation scenarios utilizing non-parametric Mann–Kendall (MK) test, Kendall Tau test, and Sen’s slope estimation. A quantile regression (QR) method has been applied to assess the lower and upper tails changes in precipitation scenarios. Precipitation extreme indices were generated to quantify the extremity of precipitation in observed and projected time domains. To portrait the spatial heterogeneity, the standard deviation and skewness are computed for precipitation extreme indices. The results show that the overall precipitation amount will be increased in the future over the Himalayan region. The monthly time series trend analysis based results reflect an interannual variability in precipitation. The QR analysis results showed significant increments in precipitation amount in the upper and lower quantiles. The extreme precipitation events are increased during October to June months; whereas, it decreases from July to September months. The representative concentration pathway (RCP) 8.5 based experiments showed extreme changes in precipitation compared to RCP2.6 and RCP4.5. The precipitation extreme indices results reveal that the intensity of precipitation events will be enhanced in future time. The spatial standard deviation and skewness based observations showed a significant variability in precipitation over the selected Himalayan catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal A, Babel MS, Maskey S (2014) Analysis of future precipitation in the Koshi river basin, Nepal. J Hydrol 513:422–434

    Article  Google Scholar 

  • Ahmed KF, Wang G, Silander J, Wilson AM, Allen JM, Horton R, Anyah R (2013) Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob Planet Change 100:320–332

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res (1984–2012) 111:D05109

    Google Scholar 

  • Bajracharya SR, Mool PK, Shrestha BR (2008) Global climate change and melting of Himalayan glaciers. Melting glaciers and rising sea levels: Impacts and implications, pp 28–46

  • Bawa KS, Ingty T (2012) Climate Change in Sikkim: A Synthesis. Climate Change in Sikkim, Patterns, Impacts and Initiatives, pp 19–48

  • Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn 41(3–4):803–817

    Article  Google Scholar 

  • Buytaert W, Vuille M, Dewulf A, Urrutia R, Karmalkar A, Célleri R (2010) Uncertainties in climate change projections and regional downscaling: implications for water resources management. Hydrol Earth Syst Sci Discuss 7:1821–1848

    Article  Google Scholar 

  • Chamaillé-Jammes S, Fritz H, Murindagomo F (2007) Detecting climate changes of concern in highly variable environments: QRs reveal that droughts worsen in Hwange National Park, Zimbabwe. J Arid Environ 71(3):321–326

    Article  Google Scholar 

  • Childs C (2004) Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July–September, 32–35

  • Choi W, Tareghian R, Choi J, Hwang CS (2014) Geographically heterogeneous temporal trends of extreme precipitation in Wisconsin, USA during 1950–2006. Int J Climatol 34:2841–2852

    Google Scholar 

  • De Lima MIP, Santo FE, Ramos AM, Trigo RM (2014) Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941–2007. Theor Appl Climatol 119(1):55–75

    Google Scholar 

  • Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1):145–163

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res 118(5):2098–2118

    Google Scholar 

  • Ghosh S, Luniya V, Gupta A (2009) Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos Sci Lett 10:285–290

    Google Scholar 

  • Gosling SN, Taylor RG, Arnell NW, Todd MC (2011) A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol Earth Syst Sci 15(1):279–294

    Article  Google Scholar 

  • Goyal MK (2014) Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India. Water Resour Manag 28(6):1501–1515

    Article  Google Scholar 

  • Goyal MK, Ojha CSP (2011a) Evaluation of linear regression methods as downscaling tools in temperature projections over the Pichola Lake Basin in India. Hydrol Process 25(9):1453–1465

    Article  Google Scholar 

  • Goyal MK, Ojha CSP (2011b) PLS regression-based pan evaporation and minimum–maximum temperature projections for an arid lake basin in India. Theor Appl Climatol 105(3–4):403–415

    Article  Google Scholar 

  • Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Env Res Risk Assess 25(4):537–554

    Article  Google Scholar 

  • Guhathakurta P, Shreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359–373

    Article  Google Scholar 

  • Guo Z, Wang N, Kehrwald NM, Mao R, Wu H, Wu Y, Jiang X (2014) Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009. Glob Planet Change 118:97–105

    Article  Google Scholar 

  • Hao L, Naiman DQ (Eds.) (2007) QR (No. 149). Sage

  • Harding RJ, Weedon GP, Van Lanen HAJ, Clark DB (2014) The future for global water assessment. J Hydrol 518:186–193

    Article  Google Scholar 

  • Harpham C, Wilby RL (2005) Multi-site downscaling of heavy daily precipitation occurrence and amounts. J Hydrol 312(1):235–255

    Article  Google Scholar 

  • Hashmi MZ, Shamseldin AY, Melville BW (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch Env Res Risk Assess 25(4):475–484

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LPH, Konz M, Shrestha AB, Bierkens MFP (2012) Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim Change 110(3–4):721–736

    Article  Google Scholar 

  • Jena PP, Chatterjee C, Pradhan G, Mishra A (2014) Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? J Hydrol 517:847–862

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Khaliq MN, Sushama L, Monette A, Wheater H (2014) Seasonal and extreme precipitation characteristics for the watersheds of the Canadian Prairie Provinces as simulated by the NARCCAP multi-RCM ensemble. Clim Dyn 44(1):255–277

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357

    Article  Google Scholar 

  • Kidson JW, Thompson CS (1998) A comparison of statistical and model-based downscaling techniques for estimating local climate variations. J Clim 11(4):735–753

    Article  Google Scholar 

  • Koenker R (2005) QR (No. 38). Cambridge university press

  • Krishnamurthy CKB, Lall U, Kwon HH (2009) Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J Clim 22(18):4737–4746

    Article  Google Scholar 

  • Kulkarni AV, Rathore BP, Singh SK, Ajai (2010) Distribution of seasonal snow covers in central and western Himalaya. Ann Glaciol 51(54):123–128

    Article  Google Scholar 

  • Kunkel KE (2003) North American trends in extreme precipitation. Nat Hazards 29(2):291–305

    Article  Google Scholar 

  • Leeds WB, Moyer EJ, Stein ML, Doan TK, Haslett J, Parnell AC, Philbin R, Jun M (2015) Simulation of future climate under changing temporal covariance structures. Adv. Stat. Climatol. Meteorol. Oceanogr. 1:1–14

    Article  Google Scholar 

  • Lupikasza E (2010) Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int J Climatol 30(7):991–1007

    Google Scholar 

  • Mahmood R, Babel MS (2013) Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theoret Appl Climatol 113(1–2):27–44

    Article  Google Scholar 

  • Mann HB (1975) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteor Soc 86:89–93

    Article  Google Scholar 

  • Mondal A, Khare D, Kundu S (2015) Spatial and temporal analysis of rainfall and temperature trend of India. Theor Appl Climatol 122:143. doi:10.1007/s00704-014-1283-z

    Article  Google Scholar 

  • Nagi R (2012) Maintaining detail and color definition when integrating color and grayscale rasters using No Alteration of Grayscale or Intensity (NAGI) fusion method. In Proceedings, pp. 16–18

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) SWAT theoretical documentation version 2011. Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Temple, TX

    Google Scholar 

  • Oliveira PTS, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta HV (2014) Trends in water balance components across the Brazilian Cerrado. Water Resour Res 50(9):7100–7114

    Article  Google Scholar 

  • Palazzi E, von Hardenberg J, Terzago S, Provenzale A (2015) Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45:21. doi:10.1007/s00382-014-2341-z

    Article  Google Scholar 

  • Pelt SCV, Beersma JJ, Buishand TA, Van den Hurk BJM, Schellekens J (2014) Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability. Clim Dyn 1–12

  • Pervez MS, Henebry GM (2014) Projections of the Ganges-Brahmaputra precipitation-Downscaled from GCM predictors. J Hydrol 517:120–134

    Article  Google Scholar 

  • Rahman MM, Arya DS, Goel NK, Dhamy AP (2010) Design flow and stage computations in the Teesta River, Bangladesh, using frequency analysis and MIKE 11 modeling. J Hydrol Eng 16(2):176–186

    Article  Google Scholar 

  • Rao KHV, Rao VV, Dadhwal VK, Diwakar PG (2014) Kedarnath flash floods: a hydrological and hydraulic simulation study. Curr Sci 106(4):598–603

    Google Scholar 

  • Ravindranath NH, Rao S, Sharma N, Nair M, Gopalakrishnan R, Rao AS, Bala G (2011) Climate change vulnerability profiles for North East India. Curr Sci 101(3):384–394

    Google Scholar 

  • Romano E, Del Bon A, Petrangeli AB, Preziosi E (2013) Generating synthetic time series of springs discharge in relation to standardized precipitation indices. Case study in Central Italy. J Hydrol 507:86–99

    Article  Google Scholar 

  • Santos M, Fragoso M (2013) Precipitation variability in Northern Portugal: data homogeneity assessment and trends in extreme precipitation indices. Atmos Res 131:34–45

    Article  Google Scholar 

  • Sawilowsky SS (2005) Misconceptions leading to choosing the t test over the Wilcoxon Mann–Whitney test for shift in location parameter. J Modern Appl Stat Methods, 4(2):598–600. Retrieved, 2014-06-18

  • Sen PK (1968) Estimates of regression coefficients based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Sen Roy S, Balling RC (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24(4):457–466

    Article  Google Scholar 

  • Sengupta A, Rajeevan M (2013) Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr Sci 105(12):1692

    Google Scholar 

  • Shashikanth K, Salvi K, Ghosh S, Rajendran K (2014) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15(2):79–85

    Article  Google Scholar 

  • Shivam, Goyal MK, Sarma AK (2016) Analysis of the change in temperature trends in Subansiri River basin for RCP scenarios using CMIP5 datasets. Theor Appl Climatol. doi:10.1007/s00704-016-1842-6

    Google Scholar 

  • Shrestha DL, Kayastha N, Solomatine DP (2009) A novel approach to parame- ter uncertainty analysis of hydrological models using neural networks. Hydrol Earth Syst Sci 13:1235–1248

    Article  Google Scholar 

  • Singh V, Goyal MK (2016) Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5 ESM2-M RCPs experiments. Atmos Res. doi:10.1016/j.atmosres.2015.07.005

    Google Scholar 

  • Snell SE (1998) Spatial interpolation of surface air temperatures using artificial neural networks: evaluating their use for downscaling GCMs. J Clim 13:886–895

    Article  Google Scholar 

  • Snell SE, Gopal S, Kaufmann RK (2000) Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs. J Clim 13(5):886–895

    Article  Google Scholar 

  • Subash N, Sikka AK (2013) Trend analysis of rainfall and temperature and its relationship over India. Theor Appl Climatol 117(3):449–462

    Google Scholar 

  • Tareghian R, Rasmussen P (2013) Analysis of Arctic and Antarctic sea ice extent using QR. Int J Climatol 33(5):1079–1086

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24:4907–4924. doi:10.1175/2011JCLI4171.1

    Article  Google Scholar 

  • Vittal H, Karmakar S, Ghosh S (2013) Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950. Geophys Res Lett 40:3253–3258. doi:10.1002/grl.50631

    Article  Google Scholar 

  • Wang X, Yang T, Li X (2016) Spatio-temporal changes of precipitation and temperature over the Pearl River basin based on CMIP5 multi-model ensemble. Stoch Env Res Risk Assess. doi:10.1007/s00477-016-1286-7

    Google Scholar 

  • Wilby RL, Dawson CW (2013) Statistical downscaling model–decision centric (SDSM-DC) version 5.1 supplementary note. Loughborough University, Loughborough

  • Wilby RL, Dawson CW, Murphy C, O’Connor P, Hawkins E (2014) The statistical DownScaling model-decision centric (SDSM-DC): conceptual basis and applications. Clim Res 61:259–276

    Article  Google Scholar 

  • Yamada T (2000) Glacier lake outburst floods in Nepal. Seppyo 62(2):137–147 (in Japanese with English summary)

    Google Scholar 

  • Yao T, Zhou H, Yang X (2009) Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau. Chin Sci Bull 54(16):2724–2731

    Google Scholar 

  • Zhang X, Tang Q, Zhang X, Lettenmaier DP (2014) Runoff sensitivity to global mean temperature change in the CMIP5 Models. Geophys Res Lett 41(15):5492–5498

    Article  Google Scholar 

Download references

Acknowledgements

This present research work has been carried out under DST research project entitled “Assessment of snowmelt and glacier melt runoff contribution in upstream part of Teesta river catchment using hydrological modeling and field based measurements” No. YSS/2014/000878 and financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Goyal, M.K. Spatio-temporal heterogeneity and changes in extreme precipitation over eastern Himalayan catchments India. Stoch Environ Res Risk Assess 31, 2527–2546 (2017). https://doi.org/10.1007/s00477-016-1350-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1350-3

Keywords

Navigation