Skip to main content

Advertisement

Log in

Experimental and modeling study on Cr(VI) transfer from soil into surface runoff

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With the development of modern agriculture, large amount of fertilizer and pesticide outflow from farming land causes great waste and serious pollution to surface water and groundwater, and threatens ecological environment and even human life. In this paper, laboratory experiments are conducted to simulate adsorbed Cr(VI) transfer from soil into runoff. A two-layer in-mixing analytical model is applied to analyze laboratory experimental results. A data assimilation (DA) method via the ensemble Kalman filter (EnKF) is used to update parameters and improve modeling results. In comparison with the experimental data, DA updated modeling results are much better than those without the updating. To make predictions better, the inflation method with a constant inflation factor via DA method was used to compensate the fast decrease of ensemble spread partially related to filter inbreeding. Based on the used rainfall and relevant physical principles, the updated value of the incomplete mixing coefficient γ is about 14.0 times of the value of the incomplete mixing coefficient α in experiment 1 and about 7.4 times in experiment 2, while the difference between the flow rate of runoff and infiltration is not so large even after reaching stable infiltration condition. The results indicate the loss of Cr(VI) in soil solute is mainly due to infiltration, rather than surface runoff. With the increase of mixing layer depth, soil adsorption capacity will increase and the loss of soil solute will decrease. The study results provide information for reducing and even preventing the agricultural nonpoint source pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam V, Quaranta G, Loyaux-Lawniczak S (2013) Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site. Environ Sci Pollut R 20:3312–3321

    Article  CAS  Google Scholar 

  • Ahuja LR, Lehman OR (1983) The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff. J Environ Qual 12(1):34–40

    Article  Google Scholar 

  • Ahuja LR, Sharpley AN, Yamamoto M, Menzel RG (1981) The depth of rainfall-runoff-soil interaction as determined by 32P. Water Resour Res 17(4):969–974

    Article  Google Scholar 

  • Allen JL, Eknes M, Evensen G (2003) An ensemble Kalman Filter with a complex marine ecosystem model: hind casting phytoplankton in the Cretan Sea. Ann Geophys 21:399–411

    Article  Google Scholar 

  • Anderson JL (2007) An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A 59(2):210–224. doi:10.1111/j.1600-0870.2006.00216.x

    Article  Google Scholar 

  • Anderson JL (2009) Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A 61(1):72–83. doi:10.1111/j.1600-0870.2008.00361.x

    Article  Google Scholar 

  • Anderson JL, Anderson SL (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127:2741–2758

    Article  Google Scholar 

  • Barrera-Diaza CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  Google Scholar 

  • Brusdal K, Brankart JM, Halberstadt G, Evensen G, Brasseur P, van Leeuwen PJ, Dombrowsky E, Verron J (2003) A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems. J Mar Syst 40–41:253–289

    Article  Google Scholar 

  • Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126:1719–1724

    Article  Google Scholar 

  • Chen Y, Zhang DX (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122

    Article  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol Appl Pharm 188:1–5

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250–251:272–291

    Article  Google Scholar 

  • Dong WC, Wang QJ (2013) Modeling soil solute release into runoff and transport with runoff on a loess slope. J Hydrol Eng 18:527–535

    Article  Google Scholar 

  • Dong WC, Wang QJ, Zhou BB, Shan YY (2013) A simple model for the transport of soil-dissolved chemicals in runoff by raindrops. Catena 101:129–135

    Article  CAS  Google Scholar 

  • Eknes M, Evensen G (2002) An Ensemble Kalman filter with a 1-D marine ecosystem model. J Mar Syst 36:75–100

    Article  Google Scholar 

  • Evensen G (1994a) Inverse methods and data assimilation in nonlinear ocean models. Physica (D) 77:108–129

    Google Scholar 

  • Evensen G (1994b) Sequential data assimilation with a nonlinear quasi- geostrotigraphic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynam 53:343–367

    Article  Google Scholar 

  • Gao Y, Xia J (2011) Chromium contamination accident in China: viewing environment policy of China. Environ Sci Technol 45:8605–8606

    Article  CAS  Google Scholar 

  • Gao B, Walter MT, Steenhuis TS, Hogarth WL, Parlange JY (2004) Rainfall induced chemical transport from soil to runoff: theory and experiments. J Hydrol 295:291–304

    Article  CAS  Google Scholar 

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129(11):2776–2790

    Article  Google Scholar 

  • Hargreaves JC, Annan JD (2006) Using ensemble prediction methods to examine regional climate variation under global warming scenarios. Ocean Model 11:174–192

    Article  Google Scholar 

  • Havis RN, Smith RE, Adrian DD (1992) Partitioning solute transport between infiltration and overland flow under rainfall. Water Resour Res 28(10):2569–2580

    Article  CAS  Google Scholar 

  • He B, Yun ZJ, Shi JB, Jiang GB (2013) Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chinese Sci Bull 58(2):134–140

    Article  CAS  Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using an Ensemble Kalman Filter technique. Mon Weather Rev 126:796–811

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (2005) Ensemble Kalman filtering. Q J RoyMeteor Soc 131:3269–3289

    Article  Google Scholar 

  • Huang CL, Li X, Lu L, Gu J (2008) Experiments of one-dimensional soil moisture assimilation system based on ensemble Kalman filter. Remote Sens Environ 112:888–900

    Article  Google Scholar 

  • Huang SH, Peng B, Yang ZH, Chai LY, Xu YZ, Su CQ (2009) Spatial distribution of chromiumin soils contaminated by chromium-containing slag. T Nonferr Metal Soc 19:756–764

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  CAS  Google Scholar 

  • Kurtz W, Hendricks Franssen HJH, Vereecken H (2012) Identification of time-variant river bed properties with the ensemble Kalman filter. Water Resour Res 48:W10534. doi:10.1029/2011WR011743

    Article  Google Scholar 

  • Lang X, Zhang DX (2014) A multimodel data assimilation framework via the ensemble Kalman filter. Water Resour Res 50(5):4197–4219. doi:10.1002/2013WR014525

    Article  Google Scholar 

  • Li C, Ren L (2011) Estimation of unsaturated soil hydraulic parameters using the ensemble Kalman filter. Vadose Zone J 10(4):1205–1227

    Article  Google Scholar 

  • Li HB, Wang ZX, Yang ZH, Chai LY, Liao YP (2012a) Static and dynamic leaching ofChromium(VI) from Chromium-containing slag. Environ Eng Sci 29(6):426–431

    Article  CAS  Google Scholar 

  • Li LP, Zhou HY, Gomez-Hernandez JJ, Franssen HJH (2012b) Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J Hydrol 428–429:152–169

    Article  Google Scholar 

  • Li LP, Zhou HY, Franssen HJH, Gomez-Hernandez JJ (2012c) Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resour Res 48:W01537. doi:10.1029/2010WR010214

    Google Scholar 

  • Mandel J, Bennethum LS, Beezley JD, Coen JL, Douglas CC, Kim M, Vodacek A (2008) A wild land fire model with data assimilation. Math Comput Simulat 79:584–606

    Article  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: are view. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Ngodock HE, Jacobs GA, Chen MS (2006) The representer method, the ensemble Kalman filter and the ensemble Kalman smoother: a comparison study using a nonlinear reduced gravity ocean model. Ocean Model 12:378–400

    Article  Google Scholar 

  • Panzeri M, Riva M, Guadagnini A, Neuman SP (2013) Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow. Water Resour Res 49(3):1334–1344. doi:10.1002/wrcr.20113

    Article  Google Scholar 

  • Pizent A, Tariba B, Živković T (2012) Reproductive toxicity of metals in men. Arh Hig RadaToksikol 63(Supplement 1):35–46

    Google Scholar 

  • Schoeniger A, Nowak W, Franssen H-JH (2012) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res 48:W04502. doi:10.1029/2011WR010462

    Google Scholar 

  • ShiXN WuLS, Chen WP, Wang QJ (2011) Solute transfer from the soil surface to overland flow: a review. Soil Sci Soc Am J 75(4):1214–1225

    Article  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance inplants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Tong JX, Yang JZ (2008) Analysis of soluble chemical transfer by runoff water in field. J Hydrodyn 20(3):382–390

    Article  Google Scholar 

  • Tong JX, Yang JZ, Hu BX, Bao RC (2010) Experimental study and mathematical modeling of soluble chemical transfer from unsaturated/saturated soil to surface runoff. Hydrol Process 24:3065–3073

    Article  CAS  Google Scholar 

  • Tong JX, Hu BX, Yang JZ (2012) Using an ensemble Kalman filter method to calibrate parameters and update soluble chemical transfer from soil to surface runoff. Transport Porous Med 91:133–152

    Article  CAS  Google Scholar 

  • Torbet HA, Potter KN, Hoffman DW, Gerik TJ, Richardson CW (1999) Surface residue and soil moisture affect fertilizer loss in simulated runoff on a heavy clay soil. Agron J 91(4):602–612

    Google Scholar 

  • Unceta N, Séby F, Malherbe J, Donard OFX (2010) Chromium speciation in solid matrices and regulation: a review. Anal Bioanal Chem 397:1097–1111

    Article  CAS  Google Scholar 

  • Wallach R (1993) Approximate analytical solution for soil chemical transfer to runoff: a modified boundary condition. Water Resour Res 29(5):1467–1474

    Article  CAS  Google Scholar 

  • Wallach R, van Genuchten MT (1990) A physically based model for predicting solute transfer from soil solution to rainfall-induced runoff water. Water Resour Res 26(9):2119–2126

    Article  Google Scholar 

  • Walter MT, Gao B, Parlange J-Y (2007) Modeling soil solute release into runoff with infiltration. J Hydrol 347:430–437

    Article  Google Scholar 

  • Wang YY, Yang ZH, Chai LY, Zhao K (2009) Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification. J Hazard Mater 169:1173–1178

    Article  CAS  Google Scholar 

  • Yang Y, Liu H, Xiang XH, Liu FY (2013) Outline of occupational chromium poisoning in China. B Environ Contam Tox 90:742–749

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zhang XC, Norton LD, Nearing MA (1997) Chemical transfer from soil solution to surface runoff. Water Resour Res 33(4):809–815

    Article  CAS  Google Scholar 

  • Zhang XC, Norton LD, Lei T, Nearing MA (1999) Coupling mixing zone concept with convection-diffusion equation to predict chemical transfer to surface runoff. Trans ASABE 42(4):987–994

    Article  Google Scholar 

  • Zhang SW, Li DQ, Qiu CJ (2011) A multimodel ensemble-based Kalman filter for the retrieval of soil moisture profiles. Adv Atmos Sci 28(1):195–206

    Article  CAS  Google Scholar 

  • Zheng DQ, Leung JKC, Lee BY (2010) An ensemble Kalman filter for atmospheric dataassimilation: application to wind tunnel data. Atmos Environ 44:1699–1705

    Article  CAS  Google Scholar 

  • Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Nature Foundation of China (Grant No. 51209187), Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653), the Open Project of State Key Laboratory of Water Resources and Hydropower Engineering Science (Grant No. 2013B108), the Fundamental Research Funds for the Central University. The authors would like to express their sincere thanks to the two anonymous reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill X. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Tong, J., Liu, Y. et al. Experimental and modeling study on Cr(VI) transfer from soil into surface runoff. Stoch Environ Res Risk Assess 30, 1347–1361 (2016). https://doi.org/10.1007/s00477-015-1161-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1161-y

Keywords

Navigation