Skip to main content
Log in

Effect of regime switching on behavior of albacore under the influence of phytoplankton concentration

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The influence of the sea environment on fish behaviors is an important ecological and environmental factor. In this article, we analyze the relationship between phytoplankton distribution in the sea and the behavioral process of a diadromous fish, albacore (Thunnus alalunga), by development of statistical models. It is well known that animals change their behavioral patterns, such as traveling and foraging, according to the conditions of their encountered habitat. To account for these characteristics in fish behavior, we develop a regime switching model with a hidden latent process, whose output is influenced by phytoplankton concentration. Geolocation prediction experiments suggested that the model can improve the prediction accuracies compared with the general regime switching model with no covariates, or traditional linear nonstationary time series models. Furthermore, robust geolocation predictions are yielded by the model even when the fish switches its migratory behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Banse K, English DC (1999) Comparing phytoplankton seasonality in the eastern and western subarctic Pacific and the western Bering Sea. Progr Oceanogr 43:235–288

    Article  Google Scholar 

  • Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SLH, Seitz A, Walli A, Fudge D (2001) Migratory movements, depth preferences and thermal biology of Atlantic bluefin tuna. Science 293(5533):1310–1314

    Article  CAS  Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis, forecasting and control, revised edn. Holden-Day, San Francisco

  • Buckle RA, Haugh D, Thomson P (2002) Growth and volatility regime switching models for New Zealand GDP data. Working paper, New Zealand Treasury

  • Dempster A, Laird N, Rubin D (1978) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 40:1–22

    Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the Bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  • Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar Res Spec Issue 58:210–226

    Google Scholar 

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288

    Article  Google Scholar 

  • Gunn JS, Polachek T, Davis T, Sherlock M, Betlehem A (1994) The development and use of archival tags for studying the migration, behaviour and physiology of bluefin tuna, with an assessment of the potential for transfer of the technology for groundfish research. In: ICES CM 1994. Mini symposium on fish migration, pp 1–23

  • Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore.

  • Josen ID, Myers RA, James MC (2007) Identifying leatherback turtle foraging behavior from satellite telemetry using a switching state-space model. Marine Ecol Prog Ser 337:255–264

    Article  Google Scholar 

  • Kitagawa G, Gersch W (1985) A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series. IEEE Trans Autom Control 30:48–56

    Article  Google Scholar 

  • Kwon HH, Sivakumar B, Moon YI, Kim BS (2011) Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model. Stoch Environ Res Risk Assess 25:567–581

    Article  Google Scholar 

  • Humphries NE, Queiroz N, Dyer JRM, Pade NG, Musyl MK, Schaefer KM, Fuller DW, Brunnschweiler JM, Doyle TK, Houghton JDR, Hays GC, Jones CS, Noble LR, Wearmouth VJ, Southall EJ, Sims DW (2010) Environmental context explains Levy and Brownian movement patterns of marine predators. Nature 465: 1066–1069

    Google Scholar 

  • Ichinokawa M, Coan AL, Takeuchi Y (2008) Transoceanic migration rates of young North Pacic albacore, Thunnus alalunga, from conventional tagging data. Can J Fish Aquat Sci 65:1681–1691

    Article  Google Scholar 

  • Lagona F (2005) Air quality indices via non homogeneous hidden Markov models. In: Proceeding of the Italian Statistical Society conference on statistics and environment. Contributed papers, CLEUP, Padova, pp 91–94.

  • Lam CH, Nielsen A, Sibert JR (2008) Improving light and temperature based geolocation by unscented Kalman filtering. Fish Res 91:15–25

    Article  Google Scholar 

  • Mardia KV, Jupp PE (1999) Directional statistics. Wiley, Chichester

    Book  Google Scholar 

  • Moustakas A, Silvert W (2011) Spatial and temporal effects on the efficacy of marine protected areas: implications from an individual based model. Stoch Environ Res Risk Assess 25:403–413

    Article  Google Scholar 

  • Nielsen A, Sibert JR (2007) State-space model for light-based tracking of marine animals. Can J Fish Aquat Sci 64:1055–1068

    Article  Google Scholar 

  • Pelletier D, Mahévas S (2005) Spatially explicit fisheries simulation models for policy evaluation. Fish Fish 6(4):307–349

    Article  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Otsu T, Uchida RN (1963) Model of the migration of albacore in the north Pacific Ocean. Fish Bull 63:33–44

    Google Scholar 

  • Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Animal Ecol. 78:1113–1123

    Article  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Racault MF, Quéré CL, Buitenhuis E, Sathyendranath S, Platt T (2012) Phytoplankton phenology in the global ocean. Ecol Indic 14:152–163

    Article  Google Scholar 

  • Shigesada N (1980) Spatial distribution of dispersing animals. J Math Biol 9:85–96

    Article  CAS  Google Scholar 

  • Sibert JR, Lutcavage ME, Nielsen A, Brill RW,Wilson SG (2006) Interannual variation in large-scale movement of Atlantic bluefin tuna (Thunnus thynnus) determined from pop-up satellite archival tags. Can J Fish Aquat Sci 63(10):2154–2166

    Article  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38(1–2):196–218

    Article  CAS  Google Scholar 

  • Smith P, Goodman D (1986). Determining fish movement from an “archival” tag: precision of geographical positions made from a time series of swimming temperature and depth. NOAA technical memorandum, NOAA-TM-NMFS-SWFC-60.

  • Turchin P (1991) Translating foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72:1253–1266

    Article  Google Scholar 

  • Whittaker ET, Watson GN (1944) A course in modern analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Zucchini W, MacDonald IL (2009) Hidden Markov models for time series, an introduction using R. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Hokimoto.

Appendix

Appendix

1.1 Applying EM algorithm for parameter estimation of regime switching model

The estimation of \({\varvec{\theta}}^{*}\) by applying EM algorithm is carried out by repeating the following procedures. We first give an initial estimate of \({\varvec{\theta}}^{*}_0\) and then find the estimate of \({\varvec{\theta}}^{*}\) which maximizes \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0). \) Next, we substitute the value of \({\varvec{\theta}}^{*}_0\) with the estimate \({\varvec{\theta}}^{*}\) obtained above, and then find optimal estimate of \({\varvec{\theta}}^{*}\) in the same way.It can be shown that under certain general conditions, the sequence of \({\varvec{\theta}}^{*}\) obtained by using this procedure converges to the maximum likelihood estimator which maximizes \(\log(L({\varvec{\theta}}^{*})), \) where \(L({\varvec{\theta}}^{*})=\sum_{\mathbf{S}^{*}}f(\user2{\varPhi}^{*}, {\mathbf{S}^{*}}). \) In computation, we update the value of \({\varvec{\theta}}^{*}\) by repeating the procedure above until the percentage decrease in \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0)\) becomes sufficiently small. The value of \({\varvec{\theta}}^{*}\) tends to reach convergence by iterations of about five times in average, although the number of iterations depends on statistical structure of measured data.

For numerical optimization of \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0), \) the initial values of \({\varvec{\theta}}^{*}\) and P * jk are necessary.Analytic solutions for \({\varvec{\theta}}^{*}\) which maximizes \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0)\) exists only in certain situations. One of such situations is when ρ* = 0 and all other parameters of \({\varvec{\theta}}^{*}\) are distinct. In this case, the solutions which maximizes \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0)\) can be given by the estimators

$$ \hat{\mu}_{0,j}=\frac{\sum_{t=1}^{T}\gamma^{*}_t(j)v_t}{\sum_{t=1}^T\gamma^{*}_t(j)}, $$
(25)
$$ \hat{\sigma}^2_{0,j}=\frac{\sum_{t=1}^{T}\gamma^{*}_t(j)(v_t-\hat{\mu}_j)^2}{\sum_{t=1}^T\gamma^{*}_t(j)}, $$
(26)

and

$$ P^{*}_{0,jk}= \frac{\sum_{t=1}^{T}\gamma^{*}_t(j,k)}{\sum_{t=1}^T\gamma^{*}_t(j)}, $$
(27)

where \(\gamma^{*}_{t}(j)=P(S^{*}_t=j|{\mathbf{V}},{\varvec{\theta}^{*}}_0)\) and \(\gamma^{*}_t(j,k)=P(S^{*}_t=j,S^{*}_{t+1}=k|{\mathbf{V}},{\varvec{\theta}^{*}}_0). \) We use the above estimators as well as ρ* = 0 as the initial values for maximization of \(Q({\varvec{\theta}}^{*}|{\varvec{\theta}}^{*}_0). \)

1.2 The maximum likelihood estimation of the regime switching model based on Wrapped Normal distribution

The consideration in Sect. 3.1 shows that the conditional probability distribution of L t , under (S t S t−1L t−1) are given, follows a normal distribution with \({\mathbb{E}(L_t|S_t, S_{t-1}, L_{t-1})=\mu_{S_t}+\rho_{t-1}\sigma_{S_t}X_{t-1}}\) and \({\mathbb{V}(L_t|S_t, S_{t-1}, L_{t-1})=\sigma^2_{S_t}, }\) where \(X_{t-1}=(L_{t-1}-\mu_{S_{t-1}})/\sigma_{S_{t-1}}\). Therefore the conditional pdf of the circular random variable ϕ t under (S t S t−1L t−1) is given by

$$ f(\phi_t|S_t, S_{t-1}, \phi_{t-1})= \frac{1}{2\pi} \left( 1+2\sum_{p=1}^{\infty}\nu^{p^2}_{S_t} \cos p\left(\phi_t-\mu^{\prime}_{t}\right) \right), $$

where \(\mu^{\prime}_{t}=(\mu_{S_t}+\rho_{t-1}\sigma_{S_t}X_{t-1})\)(mod2π), \(\nu_{S_t}=\exp(-\sigma^2_{S_t}/2)\) and X t-1 = (ϕ t-1 − μ S t-1)/σ S t-1. Furthermore, the conditional pdf of \(\varvec{\phi}=(\phi_1,\ldots,\phi_T)\) under \({\mathbf{S}}=(S_1,\ldots,S_T)\) is

$$ f(\varvec{\phi}|{\mathbf{S}})= \left(\frac{1}{2\pi}\right)^T \prod_{t=1}^{T} \left( 1+2\sum_{p=1}^{\infty}\nu^{p^2}_{S_t} \cos p\left(\phi_t-\mu^{\prime}_{t}\right) \right). $$

The estimation of the parameter, \({\varvec{\theta}}=(\{\mu_j\}, \{\sigma_j\}, \rho), \) requires maximization of the conditional expectation,

$$ {\mathbb{E}}_{\varvec{\theta}_0} (\log(L_{F}({\varvec{\theta}}))|\user2{\phi}) \equiv R({\varvec{\theta}}|{\varvec{\theta}}_0), $$

which is analogous to (6), where \(L_{F}({\varvec{\theta}})\) is the simultaneous likelihood function of ϕ and S such that

$$ \log(L_{F}({\varvec{\theta}}))= \log(f(\user2{\varvec{\phi}}|{\varvec{S}}))+ \log(f({\varvec{S}})). $$

Here the first term of the right hand side can be approximated by Taylor expansion,

$$ \begin{aligned} \log(f(\user2{\varvec{\phi}}|{\mathbf{S}})) =\, &-T\log2\pi+\sum_{t=1}^{T} \log \left( 1+2\sum_{p=1}^{\infty}\nu^{p^2}_{S_t}\cos p(\phi_t-\mu^{\prime}_{t}) \right)\\ \,\approx &-T\log2\pi+ 2\sum_{t=1}^{T}\sum_{p=1}^{\infty}e^{-{p^2}\sigma^2_{S_t}/2} \cos p\left(\phi_t-\mu^{\prime}_{t}\right)\\ & -2\sum_{t=1}^{T}\sum_{p,q=1}^{\infty} e^{-({p^2+q^2})\sigma^2_{S_t}/{2}} \cos p\left(\phi_t-\mu^{\prime}_{t}\right)\\ & \times \cos q\left(\phi_t-\mu^{\prime}_{t}\right), \end{aligned} $$

where \( \mu^{\prime}_{t}= (\mu_{S_t}+\rho C_{t-1}\sigma_{S_t}X_{t-1})({\text{mod}}2\pi). \)Also the second term is

$$ \log(f({\mathbf{S}}))=\log(\pi_{S_1})+\sum_{t=2}^{T}\log(P_{S_{t-1}S_{t}}). $$

By analogy of construction of \(Q({\varvec{\theta}}|{\varvec{\theta}}_0), R({\varvec{\theta}}|{\varvec{\theta}}_0)\) can be constructed by

$$ \begin{aligned} R({\varvec{\theta}}|{\varvec{\theta}}_0) \approx &-T\log2\pi+ 2\sum_{t=1}^{T-1}\sum_{p=1}^{\infty}\sum_{j,k=1}^{N} e^{{-{p^2}\sigma^2_{k}}/{2}}\left({{\text{cos}}\; p}\phi_{t,j,k}^{(D)}\right) \gamma_t(j,k)\\ & -2\sum_{t=1}^{T-1}\sum_{p,q=1}^{\infty}\sum_{j,k=1}^{N} e^{{-({p^2}+{q^2})}\sigma^2_{k}/{2}}\left({{\text{cos}}\; p}\phi_{t,j,k}^{(D)}{{\text{cos}}\; q}\phi_{t,j,k}^{(D)}\right)\\ &\times \gamma_t(j,k)\\ & +\sum_{j=1}^{N}(\log\pi_j)\gamma_1(j) +\sum_{t=1}^{T-1}\sum_{j,k=1}^{N}(\log P_{jk})\gamma_t(j,k),\\ \end{aligned} $$
(28)

where

$$ \begin{aligned}\phi^{(D)}_{t,j,k}=\phi_{t+1}-\left(\mu_k+\rho C_{t}\sigma_{k} \left(\frac{\phi_{t}-\mu_{j}}{\sigma_{j}}\right)\right)\left({\text{mod}}2\pi\right),&\\ \gamma_t(j,k)=\,P(S_t=j, S_{t+1}=k|\user2{\varPhi}, {\varvec{\theta}}_0), &\\ \gamma_t(j)=\,P(S_t=j|\user2{\varPhi}, {\varvec{\theta}}_0)=\sum_{k=1}^{N}\gamma_{t}(j,k). \end{aligned} $$

The values of γ t (jk) and \(\gamma_t(j)\,(j,k=1,\ldots,N\)) can be obtained by using the algorithm given in Appendix. Maximization of \(R({\varvec{\theta}}|{\varvec{\theta}}_0)\) is carried out by means of a numerical method. This maximization requires initial values of parameters. The estimates obtained by (25)–(27) with ρ = 0 are used for the initial values of μ j ’s, σ j ’s and ρ in (28), respectively.

1.3 An extension of Baum and Welch algorithm

To estimate γ t (j) and γ t (jk), we apply the modified algorithm proposed by Buckle et al. (2002). Let α t (j) and \(\beta_t(j)\,(j=1,\ldots,N\)) be time-dependent sequences satisfying

$$ \begin{aligned} \alpha_t(j)=&\,P(S_t=j|{\mathbf{V}}_t), \quad t=1,\ldots,T, \\ \beta_t(j)=&\, P(v_{t+1},\ldots,v_{T}|S_t=j,{\mathbf{V}}_t) f({\mathbf{V}}_t)/f({\mathbf{V}}_T), \quad t=1,\ldots,T-1, \\ \beta_{T}(j)=&\,1, \end{aligned} $$

where v t denotes the observation at time t and \({{\mathbf{V}}}_t=(v_{1},\ldots,v_{t}). \{\alpha_t(j)\}\) and {β t (j)} can be estimated by the following algorithms,

  1. (i)

    Forward probability

    $$ \begin{aligned} \alpha_t(k)=&\sum_{j=1}^{N}P(S_{t-1}=j, S_t=k|{\mathbf{V}}_t) \\ =&\sum_{j=1}^{N}f(v_t|S_t=k, S_{t-1}=j, {\mathbf{V}}_{t-1}) P_{jk}\alpha_{t-1}(j)/\kappa_t, \end{aligned} $$

    where

    $$ \begin{aligned} \kappa_t=&\sum_{j=1}^N\sum_{k=1}^N f(v_t|S_t=k, S_{t-1}=j, {\mathbf{V}}_{t-1})P_{jk}\alpha_{t-1}(j), \\ \alpha_1(j)=&f(v_1|S_1=j)\pi_j/\kappa_1, \quad j=1,\ldots,N. \end{aligned} $$

    Here, \(f(v_t|S_t=k, S_{t-1}=j, {\mathbf{V}}_{t-1})\) is the pdf of normal distribution with

    $$ {\mathbb{E}}(v_t|S_t=k, S_{t-1}=j, {\mathbf{V}}_{t-1})= \mu_k+\rho_{t-1}\frac{\sigma_k}{\sigma_j}(v_{t-1}-\mu_j). $$
  2. (ii)

    Backward probability

    $$ \begin{aligned} \beta_t(j)=&\, \sum_{k=1}^{N}\beta_{t+1}(k)f(v_{t+1}|S_{t+1}=k, S_{t}=j, {\mathbf{V}}_{t})P_{jk}/\kappa_{t+1}, \quad t=T-1,\ldots,1, \\ \beta_T(j)=&\, 1 \end{aligned} $$

    Having obtained the values of {α t (j)} and \(\{\beta_{t}(j)\}, \gamma_t(j)=P(S_t=j|{\mathbf{V}}_t, {\varvec{\theta}}_0)\) and \(\gamma_t(j,k)=P(S_t=j, S_{t+1}=k|{\mathbf{V}}_t, {\varvec{\theta}}_0)\) are determined from

    $$ \gamma_t(j)=\alpha_t(j)\beta_t(j), $$

    and

    $$ \gamma_t(j,k)=\beta_{t+1}(k) f(v_{t+1}|S_{t+1}=k, S_{t}=j, {\mathbf{V}}_{t})P_{jk} \alpha_t(j)/\kappa_{t+1}, $$

    respectively.

1.4 Conditional variance of M T+h

From the fact that {M * t } is sufficiently approximated by {Y t } and the assumption of boundedness on {Y t }, {M * t } also have similar boundedness (i.e., \({\mathbb{E}(M^{*2}_t) < K^{'} < \infty}\)). Under this property and the assumption |ρ * t | < 1, {M * t } also have the infinite moving average expression,

$$ \widetilde{M}^{*}_{T+h}=\psi_0\zeta_{T+h}+\psi_{T+h-1}\zeta_{T+h-1}+\cdots, $$

where ψ0 = 1 and \(\psi_{T+h-i}=\beta^i_1\prod_{j=1}^iC_{T+h-j}\;(i=1,2,\ldots\)). Now we assume an h-step ahead predictor,

$$ \widetilde{M}^{*}_{T}(h)=\psi^{*}_T\zeta_{T}+\psi^{*}_{T-1}\zeta_{T-1}+\cdots. $$

Then the mean squared error of prediction is

$$ E(M^{*}_{T+h}-\widetilde{M}^{*}_{T}(h))^2 =(\psi^2_0+\psi^2_{T+h-1}\cdots+\psi^2_{T+1})\sigma^2_{\zeta}+ \sum_{j=0}^{\infty}(\psi_{T+j}-\psi^{*}_{T+j})^2\sigma^2_{\zeta}, $$

which is minimized by ψ * T+j  = ψ T+j . Therefore \(\widetilde{M}^{*}_{T}(h)\) can be expressed by

$$ \widetilde{M}^{*}_{T}(h)=\psi_T\zeta_{T}+\psi_{T+1}\zeta_{T-1}+\cdots, $$

This means that M * T+h can be written by

$$ \begin{aligned} M^{*}_{T+h} &= \psi_0\zeta_{T+h}+\psi_{T+h-1}\zeta_{T+h-1}+\cdots+\psi_{T+1}\zeta_{T+1}+ \widetilde{M}^{*}_{T}(h) \\ & \equiv e_{T}(h)+\widetilde{M}^{*}_{T}(h), \end{aligned} $$

where e T (h) means prediction errors. Thus the conditional variance of M * T+h is

$$ {\mathbb{V}}(M^{*}_{T+h}|{\mathbf{V}}) = E(e^2_{T}(h)) =\left( 1+\sum_{j=1}^{h-1}\psi^2_{T+h-j}\right) \sigma^2_{\zeta}, $$

where the values of \(\sigma^2_{\zeta}\) and ψ T+hj can be obtained by the residual variance based on the fitting of (12) and \(\tilde{\psi}_{T+h-j}=\hat{\beta}^j_1\prod_{k=1}^{j}C_{T+h-k}, \) respectively.

1.5 Definitions of nonstationary time series models for comparison

  1. (a)

    Autoregressive integrated moving average model (ARIMA) (Box and Jenkins 1976)

    $$ \nabla z_t = \sum_{i=1}^{q}b_i\nabla z_{t-i}+\xi_{t},\quad \xi_{t}\sim WN (0,\sigma^{2}_{\xi}), $$

    where b i is an unknown constant and ∇ z t z t  − z t−1 and ξ t is a random variable following a zero-mean white noise process.

  2. (b)

    Time varying coefficients autoregressive model (TVAR) (Kitagawa and Gersch 1985)

    $$ \begin{aligned} z_t=&\, \sum_{i=1}^q \beta_{i,t} z_{t-i} +\xi_{t}, \quad \xi_{t}\sim WN(0,\Upsigma), \\ &\beta_{i,t}-\beta_{i,t-1}=u_{i,t}, \quad i=1,\ldots,q, \\ &(u_{1,t},\ldots,u_{q,t})\sim N_{q}(0,\Upsigma_q), \\ \end{aligned} $$

    where ξ t is a random variable following a zero-mean white noise process, and {u i,t } is Gaussian.

  3. (c)

    A nonstationary multivariate time series model (VAR-chla)

    $$ \begin{aligned} \nabla{\mathbf{z}}_{t} =& \,G_{1}\nabla{\mathbf{z}}_{t-1} +\cdots+ G_{q}\nabla{\mathbf{z}}_{t-q}+ {\varvec{\xi}}_{t}, \quad {\varvec{\xi}}_{t}\sim WN(0, \Upsigma), \\ {\mathbf{z}_{t}} =&\, (V_t, \,C_t)', \end{aligned} $$

    where \(G_{i}\,(i=1,\ldots,p\)) is an unknown coefficient matrix, and \({\varvec{\xi}}_{t}\) denote random white-noise variables with mean zero and covariance matrix \(\Upsigma\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hokimoto, T., Kiyofuji, H. Effect of regime switching on behavior of albacore under the influence of phytoplankton concentration. Stoch Environ Res Risk Assess 28, 1099–1124 (2014). https://doi.org/10.1007/s00477-013-0816-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0816-9

Keywords

Navigation