Skip to main content
Log in

Validation of a new meteorological forcing data in analysis of spatial and temporal variability of precipitation in India

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 04 March 2014

Abstract

During the past two decades, numerous datasets have been developed for global/regional hydrological assessment and modeling, but these datasets often show differences in their spatial and temporal distributions of precipitation, which is one of the most critical input variables in global/regional hydrological modeling. This paper is aimed to explore the precipitation characteristics of the Water and Global Change (WATCH) forcing data (WFD) and compare these with the corresponding characteristics derived from satellite-gauge data (TRMM 3B42 and GPCP 1DD) and rain gauge data. It compared the consistency and difference between the WFD and satellite-gauge data in India and examined whether the pattern of seasonal (winter, pre-monsoon, monsoon and post-monsoon) precipitation over six regions [e.g. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI)] of India agrees well for the gridded data to be useful in precipitation variability analyses. The multi-time scale of precipitation in India was analysed by wavelet transformation method using gauged and WFD precipitation data. In general, precipitation from WFD is larger than that from satellite-gauge data in NMI and Western Ghats region whereas it is smaller in the dry region of NWI. Both WFD and satellite-gauge datasets underestimate precipitation compared to the measured data but the precipitation from WFD is better estimated than that from satellite-gauge data. It was found that the wavelet power spectrum of precipitation based on WFD is reasonably close to that of measured precipitation in NWI and NCI, while slightly different in NMI. It is felt that the WFD data can be used as a potential dataset for hydrological study in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdella Y, Alfredsen K (2010) Long-term evaluation of gauge-adjusted precipitation estimates from a radar in Norway. Hydrol Res 41(3–4):171–192

    Article  Google Scholar 

  • Adeyewa ZD, Nakamura K (2003) Validation of TRMM radar rainfall data over major climatic regions in Africa. J Appl Meteorol 42(2):331–347

    Article  Google Scholar 

  • Biemans H, Hutjes RWA, Kabat P, Strengers BJ, Gerten D, Rost S (2009) Effects of precipitation uncertainty on discharge calculations for main river basins. J Hydrometeorol 10(4):1011–1025

    Article  Google Scholar 

  • Buarque DC, de Paiva RCD, Clarke RT, Mendes CAB (2011) A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. J Geophys Res 116:D19105

    Article  Google Scholar 

  • Cheema MJM, Bastiaanssen WGM (2012) Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int J Remote Sens 33(8):2603–2627

    Article  Google Scholar 

  • Chiu LS, Liu Z, Vongsaard J, Morain S, Budge A, Neville P, Bales C (2006) Comparison of TRMM and water district rain rates in New Mexico. Adv Atmos Sci 23:1–13

    Article  Google Scholar 

  • Chokngamwong R, Chiu LS (2008) Thailand daily rainfall and comparison with TRMM products. J Hydrometeorol 9(2):256–266

    Article  Google Scholar 

  • Chu J, Xia J, Xu C, Li L, Wang Z (2010) Spatial and temporal variability of daily precipitation in Haihe River basin, 1958–2007. J Geogr Sci 20(2):248–260

    Article  Google Scholar 

  • Clarke RT, Buarque DC, de Paiva RCD, Collischonn W (2011) Issues of spatial correlation arising from the use of TRMM rainfall estimates in the Brazilian Amazon. Water Resour Res 47:5

    Google Scholar 

  • CRU (2000) Climate Research Unit, University of East Anglia. http://www.cru.uea.ac.uk. Accessed May 2013

  • de Goncalves LGG, Shuttleworth WJ, Nijssen B, Burke EJ, Marengo JA, Chou SC, Houser P, Toll DL (2006). Evaluation of model-derived and remotely sensed precipitation products for continental South America. J Geophys Res Atmos 111(D16)

  • Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304

    Article  Google Scholar 

  • Gong L, Halldin S, Xu C (2011) Large-scale runoff generation—parsimonious parameterisation using high-resolution topography. Hydrol Earth Syst Sci 15:2481–2494

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5–6):561–566

    Article  Google Scholar 

  • Hagemann S, Chen C, Haerter JO, Heinke J, Gerten D, Piani C (2011) Impact of a statistical bias correction on the projected hydrological changes obtained from three gcms and two hydrology models. J Hydrometeorol 12:556–578

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeorol 2:36–50

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) Ncep-Doe Amip-Ii Reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  • Kizza M, Westerberg I, Rodhe A, Ntale HK (2012) Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J Hydrol 464–465:401–411

    Article  Google Scholar 

  • Köppen W (1936) Das geographisca System der Klimate. In: Koppen W, Geiger G (eds) Handbuch der Klimatologie. 1. C. Gebr, Borntraeger, Berlin, pp 1–44

  • Li XH, Zhang Qi, Xu C-Y (2012) Suitability of the TRMM satellite rainfalls in driving distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. J Hydrol 426–427:28–38. doi:10.1016/j.jhydrol.2012.01.013

    Article  Google Scholar 

  • Li L, Ngongondo CS, Xu CY, Gong L (2013) Comparison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa. Hydrol Res. doi:10.2166/nh.2012.175

  • Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane JE (2009) Precipitation: measurement, remote sensing, climatology and modeling. Atmos Res 94(4):512–533

    Article  Google Scholar 

  • Mishra AK, Özger M, Singh VP (2011) Wet and dry spell analysis of Global Climate Model-generated precipitation using power laws and wavelet transforms. Stoch Environ Res Risk Assess 25:517–535

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Nair S, Nemani R (2009) Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India. J Meteorol Soc Jpn 87(6):927–939

    Article  Google Scholar 

  • Parkes BL, Wetterhall F, Pappenberger F, He Y, Malamud BD, Cloke HL (2013) Assessment of a 1-hour gridded precipitation dataset to drive a hydrological model: a case study of the summer 2007 floods in the Upper Severn, UK. Hydrol Res 44:89–105

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  Google Scholar 

  • Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1):187–192

    Article  Google Scholar 

  • Rahman H, Sengupta D (2007) Preliminary comparison of daily rainfall from satellites and Indian gauge data, CAOS Technical Report No. 2007AS1, Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore

  • Rahman SH, Sengupta D, Ravichandran M (2009) Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J Geophys Res 114:D17113. doi:10.1029/2008JD011694

  • Rudolf B (1993) Management and analysis of precipitation data on a routine basis. In: Sevruk B, Lapin M (eds) Proceedings of international symposium on precipitation and evaporation, vol 1. Slovak Hydrometeorology Institution, pp 69–76

  • Rudolf B, Schneider U (2005). Calculation of gridded precipitation data for the global land-surface using in situ gauge observations. In: Proceedings of the 2nd workshop of the international precipitation working group IPWG, Monterey October 2004, EUMETSAT, ISBN 92-9110-070-6, ISSN 1727-432X, 231-247

  • Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC http://gpcc.dwd.de. Accessed May 2013

  • Shen Y, Xiong A, Wang Y, Xie P (2010) Performance of high-resolution satellite precipitation products over. China J Geophys Res 115(D2):D02114

    Google Scholar 

  • Sontakke NA, Singh N, Singh HN (2008) Instrumental period rainfall series of the Indian region (AD 1813–2005): revised reconstruction, update and analysis. Holocene 18(7):1055–1066

    Article  Google Scholar 

  • Su FG, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol 9(4):622–640

    Article  Google Scholar 

  • Tian Y, Peters-Lidard CD, Choudhury BJ, Garcia M (2007) Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J Hydrometeorol 8(6):1165–1183

    Article  Google Scholar 

  • Tobin KJ, Bennett ME (2010) Adjusting satellite precipitation data to facilitate hydrologic modeling. J Hydrometeorol 11(4):966–978

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Vila DA, De Goncalves LGG, Toll DL, Rozante JR (2009) Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J Hydrometeor 10:533–543

    Article  Google Scholar 

  • Vincent LA et al (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18:5011–5023

    Article  Google Scholar 

  • Weedon GP, Gomes S, Viterbo P, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2010) The WATCH forcing data 1958–2001: a meteorological forcing dataset for land surface-and hydrological—Rep., WATCH Tech. Rep. 22, pp 41 http://www.eu-watch.org/publications/technical-reports. Accessed May 2013

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth W, Blyth E, Österle H, Adam J, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12(5):823–848

    Article  Google Scholar 

  • Wilk J, Kniveton D, Andersson L, Layberry R, Todd MC, Hughes D, Ringrose S, Vanderpost C (2006) Estimating rainfall and water balance over the Okavango River Basin for hydrological application. J Hydrol 331:18–29

    Article  Google Scholar 

  • Xu C-Y (2001) Statistical analysis of parameters and residuals of a conceptual water balance model–methodology and case study. Water Resour Manag 15(2):75–92

    Article  Google Scholar 

  • Zhang Q, Xu CY, Jiang T, Wu YJ (2007) Possible influence of ENSO on annual maximum streamflow of Yangtze River. China J Hydrol 333:265–274

    Article  Google Scholar 

  • Zhang ZX, Xu C-Y, El-Haj El-Tahir M, Cao J, Singh VP (2012) Spatial and temporal variation of precipitation in Sudan and their possible causes during 1948–2005. Stoch Environ Res Risk Assess 26:429–441

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lebing Gong for setting the satellite-gauge data dataset. This study was jointly funded by the Research Council of Norway, Research project-JOINTINDNOR 203867, Department of Science and Technology, Govt. of India, and project 190159/V10 (SoCoCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Yu Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Xu, CY., Zhang, Z. et al. Validation of a new meteorological forcing data in analysis of spatial and temporal variability of precipitation in India. Stoch Environ Res Risk Assess 28, 239–252 (2014). https://doi.org/10.1007/s00477-013-0745-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0745-7

Keywords

Navigation