Skip to main content
Log in

A recourse-based nonlinear programming model for stream water quality management

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

A recourse-based nonlinear programming (RBNP) method is developed for stream water quality management under uncertainty. It can not only reflect uncertainties expressed as interval values and probability distributions but also address nonlinearity in the objective function. A 0-1 piecewise linearization approach and an interactive algorithm are advanced for solving the RBNP model. The RBNP is applied to a case of planning stream water quality management. The RBNP modeling system can provide an effective linkage between environmental regulations and economic implications expressed as penalties or opportunity losses caused by improper policies. The solutions can be used for generating a variety of alternatives under different combinations of pre-regulated targets, which are also associated with different water-quality-violation risk levels and varied potential economic penalty or loss values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson ML, Mierzwa MD, Kavvas ML (2000) Probabilistic seasonal forecasts of droughts with a simplified coupled hydrologic-atmospheric model for water resources planning. Stoch Environ Res Risk Assess 14(4):263–274

    Article  Google Scholar 

  • Bakar KS, Hossain SS (2010) Inference on environmental population using horvitz-thompson estimator. J Environ Inform 16(1):27–34

    Article  Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  • Chaves P, Kojiri T (2007) Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Adv Water Resour 30:1329–1341

    Article  Google Scholar 

  • Chen MJ, Huang GH (2001) A derivative algorithm for inexact quadratic program-application to environmental decision-making under uncertainty. Eur J Oper Res 128:570–586

    Article  Google Scholar 

  • Eckenfelder WW Jr (2000) Industrial water pollution control, 3rd edn. The McGraw-Hill Companies, Inc., USA

    Google Scholar 

  • Edirisinghe NCP, Patterson EI, Saadouli N (2000) Capacity planning model for a multipurpose water reservoir with target-priority operation. Ann Oper Res 100:273–303

    Article  Google Scholar 

  • Fujiwara O, Puangmaha W, Hanaki K (1988) River basin water quality management in stochastic environment. J Environ Eng 114(4):864–877

    Article  CAS  Google Scholar 

  • Haith AD (1982) Environmental systems optimization. Wiley, New York

    Google Scholar 

  • Huang GH (1996) IPWM: an interval parameter water quality management model. Eng Optim 26:79–103

    Article  Google Scholar 

  • Huang GH, Loucks DP (2000) An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ Eng Environ Syst 17:95–118

    Article  Google Scholar 

  • Huang GH, Xia J (2001) Barriers to sustainable water-quality management. J Environ Manage 61:1–23

    Article  CAS  Google Scholar 

  • Huang WC, Liaw SL, Chang SY (2010) Development of a systematic object-event data model of the database system for industrial wastewater treatment plant management. J Environ Inform 15(1):14–25

    Article  Google Scholar 

  • Karmakar S, Mujumdar PP (2006) Grey fuzzy optimization model for water quality management of a river system. Adv Water Resour 29:1088–1105

    Article  CAS  Google Scholar 

  • Kentel E, Aral MM (2004) Probabilistic-fuzzy health risk modeling. Stoch Environ Res Risk Assess 18(5):324–338

    Article  Google Scholar 

  • Kerachian R, Karamouz M (2007) A stochastic conflict resolution model for water quality management in reservoir-river systems. Adv Water Resour 30:866–882

    Article  Google Scholar 

  • Li YP, Huang GH (2009) Two-stage planning for sustainable water quality management under uncertainty. J Environ Manage 90(8):2402–2413

    Article  CAS  Google Scholar 

  • Li YP, Huang GH, Nie SL (2006) An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Adv Water Resour 29:776–789

    Article  Google Scholar 

  • Li YP, Huang GH, Chen X (2009) Multistage scenario-based inexact-stochastic programming for planning water resources allocation. Stoch Environ Res Risk Assess 23:781–792

    Article  Google Scholar 

  • Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Lund JR (2002) Floodplain planning with risk-based optimization. J Water Resour Plan Manage ASCE 128(3):202–207

    Article  Google Scholar 

  • Lung WS, Sobeck J, Robert G (1999) Renewed use of BOD/DO models in water-quality management. J Water Resour Plan Manage ASCE 125:222–230

    Article  Google Scholar 

  • Lv Y, Huang GH, Li YP, Yang ZF, Liu Y, Cheng GH (2010) Planning regional water resources system using an interval fuzzy bi-level programming method. J Environ Inform 16(2):43–56

    Article  Google Scholar 

  • Maqsood I, Huang GH, Huang YF (2005) ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stoch Environ Res Risk Assess 19:125–133

    Article  Google Scholar 

  • Masliev I, Somlyody L (1994) Probabilistic methods for uncertainty analysis and parameter estimation for dissolved oxygen models. Water Sci Technol 30:99–108

    CAS  Google Scholar 

  • Qin XS, Huang GH (2009) An inexact chance-constrained quadratic programming model for stream water quality management. Water Resour Manage 23:661–695

    Article  Google Scholar 

  • Qin XS, Huang GH, Zeng GM, Chakma A, Huang YF (2007) An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. Eur J Oper Res 180:1331–1357

    Article  Google Scholar 

  • Revelli R, Ridolfi L (2004) Stochastic dynamics of BOD in a stream with random inputs. Adv Water Resour 27:943–952

    Article  CAS  Google Scholar 

  • Sivakumar C, Elango L (2010) Application of solute transport modeling to study tsunami induced aquifer salinity in India. J Environ Inform 15(1):33–41

    Article  Google Scholar 

  • Viessman JrW, Hammer MJ (1998) Water supply and pollution control, 6th edn. Addison Wesley Longman, Inc., California

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences Foundation of China (50979001) and Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07104-004). The authors are grateful to the editors and the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Li.

Appendix: Solution method

Appendix: Solution method

A two-step method is proposed for solving the RBNP model (i.e. model 7a7l). The submodel corresponding to f + can be formulated in the first step when the system objective is to be maximized; the second submodel (corresponding to f ) can then be formulated based on the solution of the first submodel. Thus, the first submodel can be formulated (assume that B ± > 0 and f ± > 0) as follows:

$$ \begin{aligned} {\text{Max }}f^{ + } = \sum\limits_{j = 1}^{{j_{1} }} {\left[ {c_{j}^{ + } x_{j}^{ + } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\gamma_{j}^{ + } x_{jk}^{\prime + } + \varphi_{j}^{ + } x_{jk}^{ + } } \right)} } \right]} + \sum\limits_{{j = j_{1} + 1}}^{{n_{1} }} {\left[ {c_{j}^{ + } x_{j}^{ - } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\gamma_{j}^{ + } x_{jk}^{\prime - } + \varphi_{j}^{ + } x_{jk}^{ - } } \right)} } \right]} \\ - \sum\limits_{j = 1}^{{j_{2} }} {\sum\limits_{h = 1}^{v} {p_{h} \left[ {e_{j}^{ - } y_{jh}^{ - } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\alpha_{j}^{ - } y_{jhk}^{\prime - } + \beta_{j}^{ - } y_{jhk}^{ - } } \right)} } \right]} } - \sum\limits_{{j = j_{2} + 1}}^{{n_{2} }} {\sum\limits_{h = 1}^{v} {p_{h} \left[ {e_{j}^{ - } y_{jh}^{ + } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\alpha_{j}^{ - } y_{jhk}^{\prime + } + \beta_{j}^{ - } y_{jhk}^{ + } } \right)} } \right]} } \\ \end{aligned} $$
(16)

subject to:

$$ \sum\limits_{j = 1}^{{j_{1} }} {\left[ {\left| {a_{rj} } \right|^{ - } {\text{Sign}}\left( {a_{rj}^{ - } } \right)x_{j}^{ + } + \left| {a_{rj}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{rj}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ + } } } \right]} + \sum\limits_{{j = j_{1} + 1}}^{{n_{1} }} {\left[ {\left| {a_{rj} } \right|^{ + } {\text{Sign}}\left( {a_{rj}^{ + } } \right)x_{j}^{ - } + \left| {a_{rj}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{rj}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ - } } } \right] \le b_{r}^{ + } , \, \forall r} $$
(17)
$$ \begin{aligned} \sum\limits_{j = 1}^{{j_{1} }} {\left[ {\left| {a_{tj} } \right|^{ - } {\text{Sign}}\left( {a_{tj}^{ - } } \right)x_{j}^{ + } + \left| {a_{tj}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{tj}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ + } } } \right]} + \sum\limits_{{j = k_{1} + 1}}^{{j_{1} }} {\left[ {\left| {a_{tj} } \right|^{ + } {\text{Sign}}\left( {a_{tj}^{ + } } \right)x_{j}^{ - } + \left| {a_{tj}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{tj}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ - } } } \right]} \\ + \sum\limits_{j = 1}^{{j_{2} }} {\left[ {\left| {a_{tjh} } \right|^{ + } {\text{Sign}}\left( {a_{tjh}^{ + } } \right)y_{jhk}^{ - } + \left| {a_{tjh}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{tjh}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ - } } } \right]} \\ + \sum\limits_{{j = j_{2} + 1}}^{{n_{2} }} {\left[ {\left| {a_{tjh} } \right|^{ - } {\text{Sign}}\left( {a_{tjh}^{ - } } \right)y_{jhk}^{ + } + \left| {a_{tjh}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{tjh}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ + } } } \right]} \, \ge \widetilde{{w_{h}^{ - } }}, \quad \forall t, \, h, \, k \\ \end{aligned} $$
(18)
$$ x_{jk}^{\prime + } = \left\{ \begin{array} {ll} 1, & {\text{if }}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} < x_{jk}^{ + } \le \bar{M}_{k} \\ 0, & {\text{if otherwise}} \\ \end{array} \right., \quad j = 1,2, \ldots , \, j_{1} ; \, \forall k $$
(19)
$$ x_{jk}^{\prime - } = \left\{ \begin{array} {ll} 1,& {\text{if }}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} < x_{jk}^{ - } \le \bar{M}_{k} \\ 0, & {\text{if otherwise}} \\ \end{array} \right., \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} ; \, \forall k $$
(20)
$$ \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{\prime + } } = 1, \quad j = 1,2, \ldots , \, j_{1} ; \, \forall k $$
(21)
$$ \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{\prime - } } = 1, \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} ; \, \forall k $$
(22)
$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} x_{jk}^{\prime + } \le x_{jk}^{ + } \le \bar{M}_{k} x_{jk}^{\prime + } , \quad j = 1,2, \ldots ,j_{1} ; \, \forall k $$
(23)
$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} x_{jk}^{ - } \le x_{jk}^{ - } \le \bar{M}_{k} x_{jk}^{\prime - } , \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} ; \, \forall k $$
(24)
$$ y_{jhk}^{ - } = \left\{ \begin{array}{ll} 1,& {\text{ if }}\underline{N}_{k} < y_{jhk}^{ - } \le \bar{N}_{k} \\ 0,& {\text{ if otherwise}} \\ \end{array} \right., \quad j = 1,2, \ldots ,j_{2} ; \, \forall h, \, k $$
(25)
$$ y_{jhk}^{\prime + } = \left\{ \begin{array}{ll} 1, & {\text{ if }}\underline{N}_{k} < y_{jhk}^{ + } \le \bar{N}_{k} \\ 0, & {\text{ if otherwise}} \\ \end{array} \right., \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(26)
$$ \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{\prime - } } = 1, \quad j = 1, \, 2, \ldots ,j_{2} ; \, \forall h, \, k $$
(27)
$$ \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{\prime + } } = 1, \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(28)
$$ \underline{N}_{k} y_{jhk}^{\prime - } \le y_{jhk}^{ - } \le \bar{N}_{k} y_{jhk}^{\prime - } , \quad j = 1,2, \ldots ,j_{2} ; \, \forall h, \, k $$
(29)
$$ \underline{N}_{k} y_{jhk}^{\prime + } \le y_{jhk}^{ + } \le \bar{N}_{k} y_{jhk}^{\prime + } , \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(30)
$$ x_{j}^{ + } , \, x_{jk}^{ + } \ge 0, \quad j = 1,2, \ldots ,j_{1} $$
(31)
$$ x_{j}^{ - } , \, x_{jk}^{ - } \ge 0, \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} $$
(32)
$$ y_{jh}^{ - } , \, y_{jhk}^{ - } \ge 0, \quad j = 1,2, \ldots ,j_{2} $$
(33)
$$ y_{jh}^{ + } , \, y_{jhk}^{ + } \ge 0, \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} $$
(34)

where x + j and x + jk (j = 1, 2, …, j 1) are upper bounds of the first-stage variables with positive coefficients in the objective function; x j and x jk (j = j 1 + 1, j 1 + 2, …, n 1) are lower bounds of the first-stage variables with negative coefficients; y jh and y jhk (j = 1, 2, …, j 2) are the second-stage variables with positive coefficients in the objective function; y + jh and y + jhk (j = j 2 + 1, j 2 + 2, …, n 2) are the second-stage variables with negative coefficients. Then, based on solutions of the first submodel (1634), the second submodel (corresponding to f ) can be formulated as:

$$ \begin{aligned} {\text{Max }}f^{ - } & = \sum\limits_{j = 1}^{{j_{1} }} {\left[ {c_{j}^{ - } x_{j}^{ - } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\gamma_{j}^{ - } x_{jk}^{\prime - } + \varphi_{j}^{ - } x_{jk}^{ - } } \right)} } \right]} + \sum\limits_{{j = j_{1} + 1}}^{{n_{1} }} {\left[ {c_{j}^{ - } x_{j}^{ + } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\gamma_{j}^{ - } x_{jk}^{\prime + } + \varphi_{j}^{ - } x_{jk}^{ + } } \right)} } \right]} \\ - \sum\limits_{j = 1}^{{j_{2} }} {\sum\limits_{h = 1}^{v} {p_{h} \left[ {e_{j}^{ + } y_{jh}^{ + } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\alpha_{j}^{ + } y_{jhk}^{\prime + } + \beta_{j}^{ + } y_{jhk}^{ + } } \right)} } \right]} } - \sum\limits_{{j = j_{2} + 1}}^{{n_{2} }} {\sum\limits_{h = 1}^{v} {p_{h} \left[ {e_{j}^{ + } y_{jh}^{ - } + \sum\limits_{k = 1}^{{s_{j} }} {\left( {\alpha_{j}^{ + } y_{jhk}^{\prime - } + \beta_{j}^{ + } y_{jhk}^{ - } } \right)} } \right]} } \\ \end{aligned} $$
(35)

subject to:

$$ \begin{aligned} \sum\limits_{j = 1}^{{j_{1} }} {\left[ {\left| {a_{rj} } \right|^{ + } {\text{Sign}}\left( {a_{rj}^{ + } } \right)x_{j}^{ - } + \left| {a_{rj}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{rj}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ - } } } \right]} \\ + \sum\limits_{{j = j_{1} + 1}}^{{n_{1} }} {\left[ {\left| {a_{rj} } \right|^{ - } {\text{Sign}}\left( {a_{rj}^{ - } } \right)x_{j}^{ + } + \left| {a_{rj}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{rj}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ + } } } \right] \le b_{r}^{ - } , \, \forall r} \\ \end{aligned} $$
(36)
$$ \begin{aligned} \sum\limits_{j = 1}^{{j_{1} }} {\left[ {\left| {a_{tj} } \right|^{ + } {\text{Sign}}\left( {a_{tj}^{ + } } \right)x_{j}^{ - } + \left| {a_{tj}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{tj}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ - } } } \right]} + \sum\limits_{{j = k_{1} + 1}}^{{j_{1} }} {\left[ {\left| {a_{tj} } \right|^{ - } {\text{Sign}}\left( {a_{tj}^{ - } } \right)x_{j}^{ + } + \left| {a_{tj}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{tj}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ + } } } \right]} \\ + \sum\limits_{j = 1}^{{j_{2} }} {\left[ {\left| {a_{tjh} } \right|^{ - } {\text{Sign}}\left( {a_{tjh}^{ - } } \right)y_{jhk}^{ + } + \left| {a_{tjh}^{\prime } } \right|^{ - } {\text{Sign}}\left( {a_{tjh}^{\prime - } } \right)\sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ + } } } \right]} \\ + \sum\limits_{{j = j_{2} + 1}}^{{n_{2} }} {\left[ {\left| {a_{tjh} } \right|^{ + } {\text{Sign}}\left( {a_{tjh}^{ + } } \right)y_{jhk}^{ - } + \left| {a_{tjh}^{\prime } } \right|^{ + } {\text{Sign}}\left( {a_{tjh}^{\prime + } } \right)\sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ - } } } \right]} \ge \widetilde{{w_{h}^{ + } }}, \, \forall t,h,k \\ \end{aligned} $$
(37)
$$ x_{jk}^{\prime - } = \left\{ \begin{array}{ll} 1,& {\text{ if }}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} < x_{jk}^{ - } \le \bar{M}_{k} \\ 0,& {\text{ if otherwise}} \\ \end{array} \right., \quad j = 1,2, \ldots ,j_{1} ; \, \forall k $$
(38)
$$ x_{jk}^{\prime + }= \left\{ \begin{array}{ll} 1, & {\text{ if }}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} < x_{jk}^{ + } \le \bar{M}_{k}^{{}} \\ 0, & {\text{ if otherwise}} \\ \end{array} \right., \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} ; \, \forall k $$
(39)
$$ \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{\prime - } } = 1, \quad j = 1,2, \ldots ,j_{1} ; \, \forall k $$
(40)
$$ \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{\prime + } } = 1, \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} ; \, \forall k $$
(41)
$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} x_{jk}^{\prime - } \le x_{jk}^{ - } \le \bar{M}_{k} x_{jk}^{\prime - } , \quad j = 1,2, \ldots ,j_{1} ; \, \forall k $$
(42)
$$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{M}_{k} x_{jk}^{ + } \le x_{jk}^{ + } \le \bar{M}_{k} x_{jk}^{\prime + } , \quad j = j_{1} + 1,j_{1} + 2, \ldots , \, n_{1} ; \, \forall k $$
(43)
$$ y_{jhk}^{ + } = \left\{ \begin{array}{ll} 1,& {\text{if }}\underline{N}_{k} < y_{jhk}^{ + } \le \bar{N}_{k} \\ 0, & {\text{if otherwise}} \\ \end{array} \right., \quad j = 1,2, \ldots , \, j_{2} ; \, \forall h, \, k $$
(44)
$$ y_{jhk}^{\prime - } = \left\{ \begin{array}{ll} 1,& {\text{ if }}\underline{N}_{k} < y_{jhk}^{ - } \le \bar{N}_{k} \\ 0, & {\text{ if otherwise}} \\ \end{array} \right., \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(45)
$$ \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{\prime + } } = 1, \quad j = 1,2, \ldots , \, j_{2} ; \, \forall h, \, k $$
(46)
$$ \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{\prime - } } = 1, \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(47)
$$ \underline{N}_{k} y_{jhk}^{\prime + } \le y_{jhk}^{ + } \le \bar{N}_{k} y_{jhk}^{\prime + } , \quad j = 1,2, \ldots ,j_{2} ; \, \forall h, \, k $$
(48)
$$ \underline{N}_{k} y_{jhk}^{\prime - } \le y_{jhk}^{ - } \le \bar{N}_{k} y_{jhk}^{\prime - } , \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h, \, k $$
(49)
$$ 0 \le x_{j}^{ - } \le x_{{j\,{\text{opt}}}}^{ + } , \, 0 \le \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ - } } \le \sum\limits_{k = 1}^{{s_{j} }} {x_{{jk\,{\text{opt}}}}^{ + } } , \quad j = 1,2, \ldots ,j_{1} $$
(50)
$$ x_{j}^{ + } \ge x_{{j{\text{opt}}}}^{ - } , \, \sum\limits_{k = 1}^{{s_{j} }} {x_{jk}^{ + } } \ge \sum\limits_{k = 1}^{{s_{j} }} {x_{{jk\,{\text{opt}}}}^{ - } } , \quad j = j_{1} + 1, \, j_{1} + 2, \ldots ,n_{1} $$
(51)
$$ y_{jh}^{ + } \ge y_{{jh\,{\text{opt}}}}^{ - } , \, \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ + } } \ge \sum\limits_{k = 1}^{{s_{j} }} {y_{{jhk\,{\text{opt}}}}^{ - } } , \quad j = 1,2, \ldots ,j_{2} ; \, \forall h $$
(52)
$$ 0 \le y_{jh}^{ - } \le y_{{jh\,{\text{opt}}}}^{ + } , \, 0 \le \sum\limits_{k = 1}^{{s_{j} }} {y_{jhk}^{ - } } \le \sum\limits_{k = 1}^{{s_{j} }} {y_{{jhk\,{\text{opt}}}}^{ + } } , \quad j = j_{2} + 1, \, j_{2} + 2, \ldots ,n_{2} ; \, \forall h $$
(53)

where x + j opt , x + jk opt (j = 1, 2, …, j 1), x opt , x jk opt (j = j 1 + 1, j 1 + 2, …, n1), y jh opt , y jhk opt (j = 1, 2, …, j 2), y + jh opt and y + jhk opt (j = j 2 + 1, j 2 + 2, …, n2) are solutions of submodel (1). Solutions of x opt , x jk opt (j = 1, 2, …, j 1), x + j opt , x + jk opt (j = j 1 + 1, j1 + 2, …, n1), y + jh opt , y + jhk opt (j = 1, 2, …, j 2), y jh opt and y jhk opt (j = j 2 + 1, j 2 + 2, …, n2) can be obtained through solving submodel (3553). Then, through integrating solutions of submodels (1634) and (3553), final solutions for the RBNP model can be obtained as follows:

$$ x_{{j\,{\text{opt}}}}^{ \pm } = \left[ {x_{{j\,{\text{opt}}}}^{ - } , \, x_{{j\,{\text{opt}}}}^{ + } } \right]{\text{ or }}\left[ {\sum\limits_{k = 1}^{{s_{j} }} {x_{{jk\,{\text{opt}}}}^{ - } } , \, \sum\limits_{k = 1}^{{s_{j} }} {x_{{jk\,{\text{opt}}}}^{ + } } } \right], \quad j = 1,2, \ldots ,n_{1} $$
(54)
$$ y_{{jh\,{\text{opt}}}}^{ \pm } = \left[ {y_{{jh\,{\text{opt}}}}^{ - } ,y_{{jh\,{\text{opt}}}}^{ + } } \right]{\text{ or }}\left[ {\sum\limits_{k = 1}^{{s_{j} }} {y_{{jhk\,{\text{opt}}}}^{ - } } , \, \sum\limits_{k = 1}^{{s_{j} }} {y_{{jhk\,{\text{opt}}}}^{ + } } } \right], \, j = 1,2, \ldots ,n_{2} ; \, \forall h $$
(55)
$$ f_{\text{opt}}^{ \pm } = \left[ {f_{\text{opt}}^{ - } , \, f_{\text{opt}}^{ + } } \right] $$
(56)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.P., Huang, G.H. A recourse-based nonlinear programming model for stream water quality management. Stoch Environ Res Risk Assess 26, 207–223 (2012). https://doi.org/10.1007/s00477-011-0468-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0468-6

Keywords

Navigation