Skip to main content
Log in

Compositional Bayesian indicator estimation

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Indicator kriging is widely used for mapping spatial binary variables and for estimating the global and local spatial distributions of variables in geosciences. For continuous random variables, indicator kriging gives an estimate of the cumulative distribution function, for a given threshold, which is then the estimate of a probability. Like any other kriging procedure, indicator kriging provides an estimation variance that, although not often used in applications, should be taken into account as it assesses the uncertainty of the estimate. An alternative approach to indicator estimation is proposed in this paper. In this alternative approach the complete probability density function of the indicator estimate is evaluated. The procedure is described in a Bayesian framework, using a multivariate Gaussian likelihood and an a priori distribution which are both combined according to Bayes theorem in order to obtain a posterior distribution for the indicator estimate. From this posterior distribution, point estimates, interval estimates and uncertainty measures can be obtained. Among the point estimates, the median of the posterior distribution is the maximum entropy estimate because there is a fifty-fifty chance of the unknown value of the estimate being larger or smaller than the median; that is, there is maximum uncertainty in the choice between two alternatives. Thus in some sense, the latter is an indicator estimator, alternative to the kriging estimator, that includes its own uncertainty. On the other hand, the mode of the posterior distribution estimator, assuming a uniform prior, is coincidental with the simple kriging estimator. Additionally, because the indicator estimate can be considered as a two-part composition which domain of definition is the simplex, the method is extended to compositional Bayesian indicator estimation. Bayesian indicator estimation and compositional Bayesian indicator estimation are illustrated with an environmental case study in which the probability of the content of a geochemical element in soil being over a particular threshold is of interest. The computer codes and its user guides are public domain and freely available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitchison J (1982) The statistical analysis of compositional data (with discussion). J R Stat Soc Ser B 44(2):139–177

    Google Scholar 

  • Barancourt C, Creutin JD, Rivoirard J (1992) A method for delineating and estimating rainfall fields. Water Resour Res 28(4):1133–1144

    Article  Google Scholar 

  • Brus DJ, Gruijter JJ, Walvoort DJJ, de Vries F, Bronswijk JJB, Römkens PFAM, de Vries W (2002) Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. J Environ Qual 31:1875–1884

    Article  CAS  Google Scholar 

  • D’Or D, Demouget-Renard H, Garcia M (2008) Geostatistics for contaminated sites and soils: some pending questions. geoENV VI—geostatistics for environmental applications. Springer, New York, pp 409–420

  • De Oliveira V (2004) A simple model for spatial rainfall fields. Stoch Environ Res Risk A 18:131–140

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Evans M, Hastings N, Peacock B (1993) Statistical Distributions, John Wiley, Hoboken, 170 pp

  • Fabbri P (2001) Probabilistic assessment of temperature in the euganean geothermal area (Veneto Region, NE Italy). Math Geol 33(6):745–760

    Article  CAS  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P (2001) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41(7):W07013

    Google Scholar 

  • Graybill FA (1976) Theory and application of the linear model. Duxbury Press, Boston

    Google Scholar 

  • Hoeksema RJ, Kitanidis PK (1985) Analysis of the spatial structure of properties of selected aquifers. Water Resour Res 21(4):563–572

    Article  Google Scholar 

  • Jones RM, Miller KS (1966) On the multivariate lognormal distribution. J Ind Math Soc 16(2):63–76

    Google Scholar 

  • Journel A (1983) Nonparametric estimation of spatial distributions. Math Geol 15(3):445–468

    Article  Google Scholar 

  • Journel A, Isaaks EH (1984) Conditional indicator simulation: application to a Saskatchewan uranium deposit. Math Geol 16(7):685–718

    Article  CAS  Google Scholar 

  • Juang KW, Chen YS, Lee DY (2004) Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environ Pollut 127:229–238

    Article  CAS  Google Scholar 

  • Kitanidis PK (1983) Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour Res 19(2):909–921

    Article  Google Scholar 

  • Kitanidis PK (1987) Parametric estimation of covariances of regionalized variables. Water Resour Bull 23(4):671–680

    Google Scholar 

  • Kitanidis PK, Lane RW (1985) Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss–Newton method. J Hydrol 79(1–2):53–71

    Article  Google Scholar 

  • Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1):135–146

    Article  Google Scholar 

  • Mardia KV, Watkins (1989) On multimodality of the likelihood in the spatial linear model. Biometrika 76 (2):289–295

  • Minamide N (1985) An extension of the matrix inversion lemma. SIAM J Algebraic Discret Methods 6(3):371–377

    Article  Google Scholar 

  • Pannatier Y (1996) VARIOWIN: software for spatial data analysis in 2D, Springer-Verlag, New York

  • Pardo-Igúzquiza E (1998) Inference of spatial indicator covariance parameters by maximum likelihood using MLREML. Comput Geosci 24(5):453–464

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk A 15(5):384–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2002) BLU estimators and compositional data. Math Geol 34(3):259–274

    Article  Google Scholar 

  • Reis AP, da Silva EF, Sousa AJ, Patinha C, Fonseca EC (2007) Spatial patterns of disperion and pollution sources for arsenic at Losal mine, Portugal. Int J Environ Health Res 17(5):335–349

    Article  CAS  Google Scholar 

  • Solow AR (1986) Mapping by simple indicator kriging. Math Geol 18(3):335–352

    Article  Google Scholar 

  • Tolosana-Delgado R (2005) Geostatistics for constrained variables: positive data, proportions and probabilities. PhD Thesis, University of Girona, Spain, 198 p

  • Tolosana-Delgado R, Pawlowsky-Glahn V, Egozcue JJ (2008) Indicator kriging without order relation violations. Math Geosci 40:327–347

    Article  Google Scholar 

  • Yang Q, Jung HB, Culbertson CW, Marvinney RG, Loiselle MC, Locke DB, Cheek H, Thibodeau H, Zheng Y (2009) Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in Greater Augusta, Maine. Environ Sci Technol 43(8):2714–2719

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Inés Iribarren, from the Spanish Geological Survey, for discussions and providing data. Sample data were taken through the contracts between the Spanish Geological Survey and the Local Government of Navarra, Spain (Comunidad Foral de Navarra) to determine the background levels of heavy metals in soils and to perform the geochemical cartography of soils and sediments. The content of this paper does not necessarily represent the official views of these Agencies. We would like to thank the reviewers for providing a constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Guardiola-Albert.

Appendices

Appendix A. Equivalence of the maximum likelihood indicator estimator and simple indicator kriging estimator

The starting point is the likelihood given by Eq. (5) and that is repeated here:

$$ \ell (I({\mathbf{u}}_{0} );{\mathbf{I}},{\tilde{\varvec{\mu }}}_{I} ,\widetilde{{\varvec{\Upsigma}}}_{I} ) = (2\pi )^{{{\frac{ - (n + 1)}{2}}}} \left| {\widetilde{{\varvec{\Upsigma}}}_{I} } \right|^{{ - \frac{1}{2}}} \exp \left\{ { - \frac{1}{2}\left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]} \right\} $$
(17)

The maximum likelihood estimator is obtained by maximizing Eq. 17 or equivalently, by convenience, by minimizing the negative of the loglikelihood:

$$ L(I({\mathbf{u}}_{0} )) = - \ln \left( {\ell (I({\mathbf{u}}_{0} );{\mathbf{I}},{\tilde{\varvec{\mu }}}_{I} ,\widetilde{{\varvec{\Upsigma}}}_{I} )} \right) $$
(18)
$$ L(I({\mathbf{u}}_{0} )) = {\frac{n + 1}{2}}\ln (2\pi ) + \frac{1}{2}\ln \left| {\widetilde{{\varvec{\Upsigma}}}_{I} } \right| + \frac{1}{2}\left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right] $$
(19)

Thus the maximum likelihood estimator is given by the solution to the equation:

$$ {\frac{{\partial L(I({\mathbf{u}}_{0} ))}}{{\partial I({\mathbf{u}}_{0} )}}} = 0 $$
(20)

Thus:

$$ {\frac{{\partial \left[ {\frac{1}{2}\left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]} \right]}}{{\partial I({\mathbf{u}}_{0} )}}} = 0 $$
(21)

Using the previous notation:

$$ \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} = \left[ {I({\mathbf{u}}_{0} ) - m_{I} ,({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} } \right] $$
(22)
$$ \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right] = \left[ {\begin{array}{*{20}c} {I({\mathbf{u}}_{0} ) - m_{I} } \\ {({\mathbf{I}} - {\varvec{\mu}}_{I} )} \\ \end{array} } \right] $$
(23)
$$ \widetilde{{\varvec{\Upsigma}}}_{I} = \left[ {\begin{array}{*{20}c} {\Upsigma_{00} } & {\Upsigma_{0I} } \\ {\Upsigma_{I0} } & {{\varvec{\Upsigma}}_{I} } \\ \end{array} } \right] $$
(24)

Having \( \Upsigma_{I0} = \Upsigma_{0I}^{T} :( 1\times n)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{a}}\,{\text{vector}}\,{\text{of}}\,n\,{\text{elements}}. \) \( ({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} :( 1\times n)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{a}}\,{\text{vector}}\,{\text{of}}\,n\,{\text{elements}}. \) \( \Upsigma_{00} :( 1\times 1)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{an}}\,{\text{scalar}} \) \( {\varvec{\Upsigma}}_{I} :(n \times n)\,{\text{matrix}} \) \( \widetilde{{\varvec{\Upsigma}}}_{I} = \left[ {\begin{array}{*{20}c} {\Upsigma_{00} } & {\Upsigma_{0I} } \\ {\Upsigma_{I0} } & {{\varvec{\Upsigma}}_{I} } \\ \end{array} } \right] \)

An very well known relation that is needed is the inverse of a partitioned matrix (Graybill 1976):

$$ \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} = \left[ {\begin{array}{*{20}c} {\Upsigma_{00} } & {\Upsigma_{0I} } \\ {\Upsigma_{0I}^{T} } & {{\varvec{\Upsigma}}_{I} } \\ \end{array} } \right]^{ - 1} = \left[ {\begin{array}{*{20}c} {\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} } & { - \left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} } \\ { - \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} } & {\left( {\Upsigma_{I} - \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} } \\ \end{array} } \right] $$
(25)

Then

$$ \frac{1}{2}\left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right] $$
(26)

can be expanded as:

$$ \frac{1}{2}\left[ {I({\mathbf{u}}_{0} ) - m_{I} ,({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} } \right]\left[ {\begin{array}{*{20}c} {\Upsigma_{00} } & {\Upsigma_{0I} } \\ {\Upsigma_{0I}^{T} } & {{\varvec{\Upsigma}}_{I} } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {I({\mathbf{u}}_{0} ) - m_{I} } \\ {({\mathbf{I}} - {\varvec{\mu}}_{I} )} \\ \end{array} } \right] = \frac{1}{2}\left[ {A,B^{T} } \right]\left[ {\begin{array}{*{20}c} C & D \\ E & F \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} A \\ B \\ \end{array} } \right] = \frac{1}{2}\left[ {A^{2} C + AB^{T} E + ADB + B^{T} FB} \right] $$
(27)

With \( A = I({\mathbf{u}}_{0} ) - m_{I} \quad ( 1\times 1)\quad {\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{an}}\,{\text{scalar}} \) \( B = ({\mathbf{I}} - {\varvec{\mu}}_{I} )\quad (n \times 1)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{a}}\,{\text{vector}}\,{\text{of}}\,n\,{\text{elements}} \) \( C = \left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} \quad ( 1\times 1)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{an}}\,{\text{scalar}} \) \( D = - \left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \quad ( 1\times n){\text{ matrix}},\,{\text{i}}.{\text{e}}.\,{\text{a}}\,{\text{vector}}\,{\text{of}}\,n\,{\text{elements}} \) \( E = - \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} \quad (n \times 1)\,{\text{matrix}},\,{\text{i}}.{\text{e}}.\,{\text{a}}\,{\text{vector}}\,{\text{of}}\,n\,{\text{elements}} \) \( F = \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} {\varvec{\Upsigma}}_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \quad (n \times n){\text{ matrix}} \)

Thus

$$ {\frac{{\partial \left[ {\frac{1}{2}\left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]^{T} \widetilde{{\varvec{\Upsigma}}}_{I}^{ - 1} \left[ {\widetilde{{\mathbf{I}}} - {\tilde{\varvec{\mu }}}_{I} } \right]} \right]}}{{\partial I({\mathbf{u}}_{0} )}}} = AC + \frac{1}{2}B^{T} E + \frac{1}{2}DB = 0 $$
(28)
$$ \begin{aligned} AC + \frac{1}{2}B^{T} E + \frac{1}{2}DB & = (I(u_{0} ) - m_{I} )\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} - \frac{1}{2}({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} \\ & \quad - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} \Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(29)

Pre-multiplying Eq. 29 by \( \left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right),{\text{a}}(1 \times 1)\,{\text{matrix,}}\,{\text{i}} . {\text{e}} .\,{\text{a}}\,{\text{scalar:}} \)

$$ (\Upsigma_{00} - \Upsigma_{0I} \Upsigma_{I}^{ - 1} \Upsigma_{0I}^{T} )(I(u_{0} ) - m_{I} )\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)^{ - 1} - \frac{1}{2}(\Upsigma_{00} - \Upsigma_{0I} \Upsigma_{I}^{ - 1} \Upsigma_{0I}^{T} )({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}(\Upsigma_{00} - \Upsigma_{0I} \Upsigma_{I}^{ - 1} \Upsigma_{0I}^{T} ) \left( {\Upsigma _{{00}} - \Upsigma _{{0I}} {\mathbf{\Upsigma }}_{I}^{{ - 1}} \Upsigma _{{0I}}^{T} } \right)^{{ - 1}} \Upsigma _{{0I}} {\mathbf{\Upsigma }}_{I}^{{ - 1}} ({\mathbf{I}} - {\mathbf{\mu }}_{I} ) = 0$$
(30)

one reach the expression:

$$ (I(u_{0} ) - m_{I} ) - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} \left( {\Upsigma_{I} - \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\,=\,0 $$
(31)

A needed result is the matrix inversion lemma (Minamide 1985):

$$ \left( {{\varvec{\Upsigma}}_{I} - \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} \Upsigma_{0I} } \right)^{ - 1} = {\varvec{\Upsigma}}_{I}^{ - 1} + {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} (\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} )^{ - 1} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} $$
(32)

Inserting (32) into (31) one obtains:

$$ \begin{aligned} & (I(u_{0} ) - m_{I} ) - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} \\ & \left( {{\varvec{\Upsigma}}_{I}^{ - 1} + {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} (\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} )^{ - 1} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} } \right)\Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(33)

Next, expanding the second term of the left hand side of Eq. 33:

$$ \begin{aligned} & (I(u_{0} ) - m_{I} ) - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} \left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right) \\ & {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} (\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} )^{ - 1} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} {\varvec{\Upsigma}}_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(34)

And after expanding the third term of the left hand side of Eq. 34 and simplification:

$$ \begin{aligned} (I(u_{0} ) - m_{I} ) & - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} {\varvec{\Upsigma}}_{0I}^{T} \Upsigma_{00}^{ - 1} \\ & \quad - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(35)

And because \( \frac{1}{2}({\mathbf{I}} - {\varvec{\mu}}_{I} )^{T} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} = \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) \), as \( \Upsigma_{I}^{ - 1} \)is symmetric, (35) can be expressed as:

$$ \begin{aligned} (I(u_{0} ) - m_{I} ) & - \frac{1}{2}\left( {\Upsigma_{00} - \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} } \right)\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} {\varvec{\Upsigma}}_{0I}^{T} \Upsigma_{00}^{ - 1} \\ & \quad - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(36)

And expanding the second term of (36) one reach the expression:

$$ \begin{aligned} & (I(u_{0} ) - m_{I} ) - \frac{1}{2}\Upsigma_{00} \Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\Upsigma_{00}^{ - 1} + \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) \\ & \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} {\varvec{\Upsigma}}_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(37)

Which after simplification and because \( \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \) is a (1 × 1) matrix, i.e. an scalar and it has changed places accordingly.one has:

$$ \begin{aligned} & (I(u_{0} ) - m_{I} ) - \frac{1}{2}\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) + \frac{1}{2}\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} )\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} \Upsigma_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} \Upsigma_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) \\ & \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} {\varvec{\Upsigma}}_{0I}^{T} \Upsigma_{00}^{ - 1} - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 \\ \end{aligned} $$
(38)

The third and fourth terms of the left hand side cancel to obtain:

$$ (I(u_{0} ) - m_{I} ) - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) - \frac{1}{2}\Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) = 0 $$
(39)

one finally has

$$ I(u_{0} ) = m_{I} + \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} ({\mathbf{I}} - {\varvec{\mu}}_{I} ) $$
(40)

It may be seen else were (e.g. Goovaerts 1997) how Eq. 32 is exactly the simple indicator kriging estimator.

$$ I(u_{0} ) = m_{I} + \sum\limits_{i = 1}^{n} {\lambda_{i} } (I({\mathbf{u}}_{i} ) - m_{I} ) $$
(41)

were the set of weights is given, in matrix form, by

$$ {\varvec{\uplambda}} = \Upsigma_{0I} {\varvec{\Upsigma}}_{I}^{ - 1} $$
(42)

Appendix B. Trapezoidal prior distribution

A flexible prior distribution for coding prior information at each unsampled location from secondary information is given by the trapezoidal pdf prior. The trapezoidal prior has been implemented in the provided software and it can be defined with four parameters which may be seen in Fig. 11. These four parameters (a, b, c, d) are but four indicator values and thus must be in the interval [0,1] and in non decreasing order \( 0 \le a \le b \le c \le d \le 1 \). With this four parameters, the trapezoidal pdf (Fig. 11a) may be transformed to the uniform in a given interval (Fig. 11e), triangular (Fig. 11b), left rectangular triangular (Fig. 11c), etc. This is an efficient way of coding fuzzy prior information into a prior distribution. Additionaly do not dependent on parametric parameters (mean, standard deviation, shape parameter, …) of parametrized distribution. For example the trapezoidal pdf of Fig. 11a says that the prior value of the indicator is most likely in the interval [b,c], with smaller likelihood is in the interval [a,b] and [c,d] and no likelihood in the interval [0,a] or [d,1]. The uniform prior will be specified with \( a = b = 0 \) and \( c = d = 1 \) (Fig. 11e).

Fig. 11
figure 11

Different forms of prior using the trapezoidal pdf. a trapezoidal, b triangular, c left rectangular triangular, d right rectangular triangular, e uniform, f trapezoidal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guardiola-Albert, C., Pardo-Igúzquiza, E. Compositional Bayesian indicator estimation. Stoch Environ Res Risk Assess 25, 835–849 (2011). https://doi.org/10.1007/s00477-011-0455-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-011-0455-y

Keywords

Navigation