Skip to main content
Log in

Entropy-based correlated shrinkage of spatial random processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper proposes a two-stage correlated non-linear shrinkage estimation methodology for spatial random processes. A block hard thresholding design, based on Shannon’s entropy, is formulated in the first stage. The thresholding design is adaptive to each resolution level, because it depends on the empirical distribution function of the mutual information ratios between empirical wavelet blocks and the random variables of interest, at each scale. In the second stage, a global correlated (inter- and intra-scale) shrinkage is applied to approximate the values of interest of the underlying spatial process. Additionally, a simulation study is developed, in the Gaussian context, to analyze the sensitivity, measured by empirical stochastic ordering, of the entropy-based block hard thresholding stage in relation to the parameters characterizing local variability (fractality) and dependence range of the spatial process of interest, the noise level, and the design of the region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A Riesz basis of a Hilbert space H is a basis satisfying:

    1. (i)

      there exist constants \(C^{\prime }>C>0\) such that, for every sequence of scalars \({\left\{ c_{m}:m\in \mathbb{N}\right\} },\)

      $$ C\sum_{m}\left| c_{m}\right| ^{2}\leq \left\| \sum_{m}c_{m}\phi_{m}\right\| _{H}^{2}\leq C^{\prime }\sum_{m}\left| c_{m}\right| ^{2},\quad \hbox {and} $$
      (6)
    2. (ii)

      the vector space of finite sums \(\sum_{m}c_{m}\phi _{m}\) (on which (6) is tested) is dense in H.

References

  • Abramovich F, Sapatinas T, Silverman BW (1998) Wavelet thresholding via a Bayesian approach. J R Stat Soc B 60:725–749

    Article  Google Scholar 

  • Amiri M, Azimifar Z, Fieguth P (2007) Correlated non-linear wavelet shrinkage. In: Proceedings of the international conference on image processing (ICIP 2008), 12–15 Oct 2008, San Diego, pp 2348–2351

  • Angulo JM, Ruiz-Medina MD (1999) Multiresolution approximation to the stochastic inverse problem. Adv Appl Probab 31:1039–1057

    Article  Google Scholar 

  • Angulo JM, Bueso MC, Alonso FJ (2000) A study on sampling design for optimal prediction of space-time stochastic processes. Stoch Environ Res Risk Assess 14:412–427

    Article  Google Scholar 

  • Angulo JM, Ruiz-Medina MD, Alonso FJ, Bueso MC (2005) Generalized approaches to spatial sampling design. Environmetrics 16:523–534

    Article  Google Scholar 

  • Anh VV, Angulo JM, Ruiz-Medina MD, Tieng Q (1998) Long-range dependence and second-order intermittency of two dimensional turbulence. Environ Model Softw 13:233–238

    Article  Google Scholar 

  • Autin F (2008) Maxisets for μ-thresholding rules. Test 17:332–349

    Article  Google Scholar 

  • Bueso MC, Angulo JM, Alonso FJ (1998) A state-space-model approach to optimal spatial sampling design based on entropy. Environ Ecol Stat 5:29–44

    Article  Google Scholar 

  • Chipman HA, Kolaczyk ED, Mcculloch RE (1997) Adaptive Bayesian wavelet shrinkage. J Am Stat Assoc 92:1413–1421

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 352:3651–3685

    Google Scholar 

  • Crouse M, Nowak R, Baraniuk R (1998) Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans Signal Process 46:886–902

    Article  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. CBMS conference series in applied mathematics, vol 61. SIAM, Philadelphia

  • De Boor C, De Vore RA, Ron A (1993) On the construction of multivariate (pre) wavelets. Constr Approx 9:123–166

    Article  Google Scholar 

  • De Iaco S, Myers D, Posa D (2001) Space-time analysis using a general product-sum model. Stat Probab Lett 52:21–28

    Article  Google Scholar 

  • De Iaco S, Myers D, Posa D (2002) Nonseparable space-time covariance models: some parametric families. Math Geol 34:23–41

    Article  Google Scholar 

  • Donoho DL, Johnstone IM (1994a) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81:425–455

    Article  Google Scholar 

  • Donoho DL, Johnstone IM (1994b) Minimax risk over l p -balls for l q -error. Probab Theory Relat Fields 99:277–303

    Article  Google Scholar 

  • Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224

    Article  Google Scholar 

  • Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Ann Stat 26:879–921

    Article  Google Scholar 

  • Gneiting T (2002) Stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600

    Article  Google Scholar 

  • Guttorp P, Le ND, Sampson PD, Zidek JV (1993) Using entropy in the redesign of an environmental monitoring network. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Elsevier, Amsterdam, pp 175–202

  • Ivanov AV, Leonenko NN (2004) Asymptotic theory of nonlinear regression with long-range dependence. Math Methods Stat 13:153–178

    Google Scholar 

  • Johnstone IM, Bernard W, Silverman B (2005) Empirical Bayes selection of wavelet thresholds. Ann Stat 33:1700–1752

    Article  Google Scholar 

  • Kerkyacharian PC, Picard D (2000) Thresholding algorithms, maxisets and well concentrated bases. Test 9:283–345

    Article  Google Scholar 

  • Kerkyacharian PC, Picard D (2002) Minimax or maxisets. Bernoulli 8:219–253

    Google Scholar 

  • Kiriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31:651–684

    Article  Google Scholar 

  • Le ND, Zidek JV (2006) Statistical analysis of environmental space-time processes. Springer, New York

    Google Scholar 

  • Liu J, Moulin P (2001) Complexity-regularized image denoising. IEEE Trans Image Process 10:841–851

    Article  Google Scholar 

  • Mallat SG (1989) Multiresolution approximations and wavelet orthonormal bases of \({L^{2}(\mathbb{R})}.\) Trans Am Math Soc 315:69–87

    Google Scholar 

  • Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge

    Google Scholar 

  • Romberg J, Choi H, Baraniuk R (2001) Bayesian tree-structured imaged modeling using wavelet-domain hidden Markov models. IEEE Trans Image Process 10:1056–1068

    Article  CAS  Google Scholar 

  • Ruiz-Medina MD, Angulo JM (2002) Spatio-temporal filtering using wavelets. Stoch Environ Res Risk Assess 16:241–266

    Article  Google Scholar 

  • Ruiz-Medina MD, Angulo JM (2007) Functional estimation of spatiotemporal heterogeneities. Environmetrics 18:775–792

    Article  Google Scholar 

  • Ruiz-Medina MD, Alonso FJ, Angulo JM, Bueso MC (2003) Functional stochastic modeling and prediction of spatio-temporal processes. J Geophys Res Atmos 108(D24):9003–9023. doi:10.1029/2003JD003416

    Google Scholar 

  • Ruiz-Medina MD, Angulo JM, Anh VV (2008) Multifractality in space-time statistical models. Stoch Environ Res Risk Assess 22(S1):81–86

    Article  Google Scholar 

  • Stein M (2003) Space-time covariance functions. J Am Stat Assoc 100:310–321

    Article  Google Scholar 

  • Vidakovic B (1998a) Statistical modeling by wavelets. Wiley series in probability and statistics. Wiley, New York

    Google Scholar 

  • Vidakovic B (1998b) Wavelet-based nonparametric Bayes methods. Practical nonparametric and semiparametric Bayesian statistics. Lecture Notes in Statistics, vol 133. Springer, New York, pp 133–155

  • Wikle CK, Cressie N (1999) A dimension-reduction approach to space-time Kalman filtering. Biometrika 86:815–829

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for their constructive comments and suggestions to improve the original manuscript. This work has been supported in part by projects MTM2009-13250 and MTM2009-13393 of the SGPI, and P08-FQM-3834 and P09-FQM-5052 of the Andalusian CICE, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Angulo.

Appendix

Appendix

It well known that an orthonormal basis of wavelet functions of \({L^{2}({\mathbb{R}}^{d})},\) the space of square integrable functions defined on \({{\mathbb{R}}^{d}, \,d\in \mathbb{N}},\) provides a multiresolution analysis of this space. Thus, it allows the description of a L 2-signal at different resolution levels, from the macro-scale to the micro-scale, that is, from its global characteristics and asymptotic properties to its local variability properties (see, for example, De Boor et al. 1993; Daubechies 1992; Mallat 1989; Meyer 1992).

A multiresolution approximation of \({L^{2}( {\mathbb{R}}^{d}) }\) is defined as an increasing sequence \({\left\{ V_{j}:j\in \mathbb{Z}\right\} }\) of closed linear subspaces of \({L^{2}({\mathbb{R}}^{d}) }\) satisfying the following properties:

  1. (i)

    \(\bigcap_{-\infty }^{\infty }V_{j}=\left\{0\right\}, \bigcup_{-\infty }^{\infty }V_{j}\) is dense in \({L^{2}( {\mathbb{R}}^{d})};\)

  2. (ii)

    \(f\left({\mathbf x}\right) \in V_{0}\) iff \(f\left( 2{\mathbf x}\right) \in V_{j+1},\) for all \({{\mathbf x}\in {\mathbb{R}}^{d}}\) and \({j\in \mathbb{Z}};\)

  3. (iii)

    \(f\left({\mathbf x}\right) \in V_{0}\) iff \(f\left( {\mathbf x}-{\mathbf k}\right) \in V_{0},\) for all \({{\mathbf x}\in{\mathbb{R}}^{d}}\) and \({{\mathbf k}\in {\mathbb{Z}}^{d}},\) and

  4. (iv)

    there exists a function \(g\left( \cdot \right) \in V_{0}\) such that the sequence \({\left\{ g\left( {\mathbf x}- {\mathbf k}\right): {\mathbf k}\in {\mathbb{Z}}^{d}\right\} }\) is a Riesz basis of V 0.

Different approaches have been adopted in the construction of an orthonormal basis of wavelet functions associated with a multiresolution analysis of \({L^{2}({\mathbb{R}}^{d})}.\) In particular, from a Riesz basisFootnote 1 of V 0, an orthonormal basis of wavelet functions can be constructed using the spectral theory of \(L^{2}\left( [0,2\pi )^{d}\right)\)-functions (see, for example, Meyer 1992). Formally, the following decomposition of \({L^{2}({\mathbb{R}}^{d})}\) is obtained from an orthonormal basis of wavelet functions:

$$ L^{2}({\mathbb{R}}^{d})=V_{0}\oplus \sum_{j=0}^{\infty} W_{j}. $$

Thus, for a function \({f\in L^{2}({\mathbb{R}}^{d})},\) its projection on an orthonormal scaling basis of V 0 provides the draft of f, and its projections on the orthonormal wavelet bases of the spaces \({W_{j},\, j\in \mathbb{N}},\) generated by translations and contractions of the basic wavelet functions, reproduce local variability properties of f at different resolution levels \({j\in \mathbb{N}}.\) Note that, for every \({j \in \mathbb{N}},\)

$$ V_{j}= V_{j-1}\oplus W_{j-1}. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angulo, J.M., Madrid, A.E. & Ruiz-Medina, M.D. Entropy-based correlated shrinkage of spatial random processes. Stoch Environ Res Risk Assess 25, 389–402 (2011). https://doi.org/10.1007/s00477-010-0450-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0450-8

Keywords

Navigation