Skip to main content
Log in

Entropy-based parameter estimation for extended Burr XII distribution

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Two entropy-based methods, called ordinary entropy (ENT) method and parameter space expansion method (PSEM), both based on the principle of maximum entropy, are applied for estimating parameters of the extended Burr XII distribution. With the parameters so estimated, the Burr XII distribution is applied to six peak flow datasets and quantiles (discharges) corresponding to different return periods are computed. These two entropy methods are compared with the methods of moments (MOM), probability weighted moments (PWM) and maximum likelihood estimation (MLE). It is shown that PSEM yields the same quantiles as does MLE for discrete cases, while ENT is found comparable to the MOM and PWM. For shorter return periods (<10–30 years), quantiles (discharges) estimated by these four methods are in close agreement, but the differences amongst them grow as the return period increases. The error in quantiles computed using the four methods becomes larger for return periods greater than 10–30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2):215–232

    Article  Google Scholar 

  • Burr IW, Cislak PJ (1968) On a general system of distribution I. Its curve characteristics II. The sample median. J Am Stat Assoc 63:627–638

    Article  Google Scholar 

  • Fiorentino M, Arora K, Singh VP (1987) The two-component extreme value distribution for flood frequency analysis: Derivation of a new estimation method. Stoch Hydrol Hydraul (now SERRA) 1:199–208

    Article  Google Scholar 

  • Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15:1049–1054

    Article  Google Scholar 

  • Hosking JRM (1986) The theory of probability weighted moments. Res Rep RC 12210:160

    Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum-entropy methods. Proc IEEE 70(9):939–952

    Article  Google Scholar 

  • Kappenman RF (1989) The use of power transformation for improved entropy estimation. Commun Stat Theory Methods 18(9):3355–3364

    Article  Google Scholar 

  • Kapur JN, Kesavan HK (1992) Entropy optimization principles with applications. Academic Press, Inc., New York

    Google Scholar 

  • Kesavan HK, Kapur JN (1989) The generalized maximum entropy principle. IEEE Trans Syst Man Cybern 19(5):1042–1052

    Article  Google Scholar 

  • Kullback S, Leibler RA (1951) On infromation and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  • Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resour Res 15(5):1055–1064

    Article  Google Scholar 

  • Li ZW, Zhang YK (2008) Multi-scale entropy analysis of Mississippi river flow. Stoch Environ Res Risk Assess 22(4):507–512

    Article  Google Scholar 

  • Lind NC, Hong HP, Solana V (1989) A cross entropy method for flood frequency analysis. Stoch Hydrol Hydraul 3(3):191–202

    Article  Google Scholar 

  • Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the Burr distribution. J Appl Stat 23(6):609–620

    Article  Google Scholar 

  • Rodriguez RN (1977) A guide to the Burr type XII distributions. Biometrika 64(1):129–134

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communications. Bell System Technical Journal 27:379–443

    Google Scholar 

  • Shao QX, Wong H, Xia J, Wai-Cheung IP (2004) Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis. J Hydrol Sci 49(4):685–701

    Article  Google Scholar 

  • Shore JE, Johnson RW (1980) Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans Inform Theory IT 26(1):26–37

    Article  Google Scholar 

  • Singh VP (1997) The use of entropy in hydrology and water resources. Hydrol Process 11(6):587–626

    Article  Google Scholar 

  • Singh VP (1998) Entropy-based parameter estimation in hydrology. Kluwer, Dordrecht

  • Singh VP, Deng ZQ (2003) Entropy-based parameter estimation for Kappa distribution. Journal of Hydrologic Engineering 8(2):81–92

    Article  Google Scholar 

  • Singh VP, Rajagopal AK (1986) A new method of parameter estimation for hydrologic frequency analysis. Hydrological Science and Technology 2(3):33–40

    Google Scholar 

  • Singh VP, Guo H, Yu FX (1993) Paramter estimation for 3-parameetr log-logistic distribution (LLD3) by POME. Stoch Hydrol Hydraul (now SERRA) 7:163–177

    Article  Google Scholar 

  • Tadikamalla PR (1980) A look at the Burr and related distributions. Int Stat Rev 48(3):337–344

    Article  Google Scholar 

  • Wang FK, Keats JB, Zimmer WJ (1996) Maximum likelihood estimation of the Burr XII parameters with censored and uncensored data. Microelectron Reliab 36(3):359–362

    Article  Google Scholar 

  • Weidemann HL, Stear EB (1969) Entropy analysis of parameter estimation. Inf Control 14:493–506

    Article  Google Scholar 

  • Wingo DR (1993) Maximum likelihood estimation of Burr XII distribution parameters under type II censoring. Microelectron Reliab 33(9):1251–1257

    Article  Google Scholar 

  • Xingsi L (1992) An entropy-based aggregate method for minimax optimization. Eng Optim 18:277–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengchao Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Z., Singh, V.P. Entropy-based parameter estimation for extended Burr XII distribution. Stoch Environ Res Risk Assess 23, 1113–1122 (2009). https://doi.org/10.1007/s00477-008-0286-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-008-0286-7

Keywords

Navigation