Skip to main content

Advertisement

Log in

Drought characterization: a probabilistic approach

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Using the alternative renewable process and run theory, this study investigates the distribution of drought interval time, mean drought interarrival time, joint probability density function and transition probabilities of drought events in the Kansabati River basin in India. The standardized precipitation index series is employed in the investigation. The time interval of SPI is found to have a significant effect of the probabilistic characteristics of drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bussay A, Szinell C, Szentimery T (1999) Investigations and measurements of droughts in Hungary. Hungarian Meterological Service, Budapest

    Google Scholar 

  • Chung CH, Salas JD (2000) Drought occurrence probabilities and risks of dependent hydrological processes. J Hydrol Eng ASCE 5(3):259–268

    Article  Google Scholar 

  • Dracup JA, Kendall DR (1990) Floods and droughts. In: Waggoner PE (eds) Climate change and US water resources. Wiley, New York, pp 243–267

  • Dracup JA, Lee KS, Paulson EG (1980) On the statistical characteristics of drought events. Water Resour Res 16(2):289–296

    Article  Google Scholar 

  • Fernandez B, Salas JD (1999a) Return period and risk of hydrologic events. I: Mathematical formulation. J Hydrol Eng ASCE 4(4):297–307

    Article  Google Scholar 

  • Fernandez B, Salas JD (1999b) Return period and risk of hydrologic events. II: Applications. J Hydrol Eng ASCE 4(4):308–316

    Article  Google Scholar 

  • González J, Valdés JB (2003) Bivariate drought recurrence analysis using tree rings reconstructions. J Hydrol Eng ASCE 8(5):247–258

    Article  Google Scholar 

  • Guttman NB (1998) Comparing the palmer drought index and standardized precipitation index. J Am Water Resour Assoc 34(1):113–121

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322

    Article  Google Scholar 

  • Haan CT (2002) Statistical methods in hydrology. The Iowa State University Press, Ames, p 496

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438

    Article  Google Scholar 

  • Hughes BL, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  • Kendel DR, Dracup JA (1992) On the generation of drought events using an alternating renewal-reward model. Stochast Hydro Hydr 6(1):55–68

    Article  Google Scholar 

  • Kim T, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng ASCE 8(5):237–246

    Article  Google Scholar 

  • Kim T, Valdés JB, Yoo C (2006) Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index. J Hydrol Eng ASCE 11(2):134–143

    Article  CAS  Google Scholar 

  • Lana X, Serra C, Burgueño A (1998) Spatial and temporal characterization ofannual extreme droughts in Catalonia (Northern Spain). Int J Climatol 18:93–110

    Article  Google Scholar 

  • Lana X, Serra C, Burgueño A (1998) Spatial and temporal characterization of annual extreme droughts in catalonia (Northern Spain). Int J Clim 18:93–110

    Article  Google Scholar 

  • Loaiciga HA, Leipnik RB (1996) Stochastic renewal model of low-flow stream sequences. Stochast Hydro Hydr 10(1):65–85

    Article  Google Scholar 

  • Mathier L, Perreault L, Ashkar F (1992) The use of geometric and gamma related distributions for frequency analysis of water deficit. Stochast Hydro Hydr 6(4):239–254

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Preprints, 8th conference on applied climatology, Anaheim, California, 17–22 January 1993, pp 179–184

  • Medhi J (2002) Stochastic models in queueing theory, 2nd edn. Academic Press, New York, p 450, ISBN 0-12-487462-2

  • Mishra AK, Desai VR (2005a) Spatial and temporal drought analysis in the Kansabati River Basin, India. Int J River Basin Manage IAHR 3(1):31–41

    Google Scholar 

  • Mishra AK, Desai VR (2005b) Drought forecasting using stochastic models. Stochast Environ Res Risk Assess 19:326–339

    Article  Google Scholar 

  • Mishra AK, Desai VR (2006c) Drought forecasting using feed-forward recursive neural network. Ecol model 198:127–138

    Article  Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper no. 45, US Department of Commerce, Weather Bureau, Washington, DC

  • Redmond KT (2000) Integrated climate monitoring for drought detection. In: Wilhite DA (eds) Drought: a global assessment. Routledge, pp 145–158

  • Ross SM (2000) Introduction to probability models. Harcourt India Pvt. Ltd, New Delhi

    Google Scholar 

  • Salas JD (1993) Analysis and modeling of hydrologic time series. In: Maidment DR (eds) Handbook of hydrology, McGraw Hill, New York, pp 19.1–19.72

    Google Scholar 

  • Sen Z (1976) Wet and dry periods of annual flow series. J Hydrol Div ASCE 106(HY1):99–115

    Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage ASCE 127(1):30–40

    Article  Google Scholar 

  • Stedinger JR, Vogel RM, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (eds) Handbook of hydrology, McGraw Hill, New York, pp 18.1–18.66

    Google Scholar 

  • Steinemann A (2003) Drought indicators and triggers: a stochastic approach to evaluation. J Am Water Resour Assoc 39(5):1217–1233

    Article  Google Scholar 

  • Szalai S, Szinell C (2000). Comparison of two drought indices for drought monitoring in Hungary – a case study, In: Vogt JV, Somma F (eds) Drought and drought mitigation in Europe, Kluwer, Dordrecht, pp 161–166

    Google Scholar 

  • Wilhite DA, Rosenberg NJ, Glantz MH (1986) Improving federal response to drought. J Clim Appl Meteorol 25:332–342

    Article  Google Scholar 

  • Wolff RW (1989) Stochastic modeling and the theory of queues. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  • Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic droughts. Hydrol. Papers 23, Colorado State University Publication, Colorado State University, Fort Collins, Colorado, USA

  • Yue S (1999) Applying bivariate normal distribution to flood frequency analysis. Water Int IWRA 24(3):248–254

    Article  Google Scholar 

  • Zelenhastic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng ASCE 11(2):150–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, A.K., Singh, V.P. & Desai, V.R. Drought characterization: a probabilistic approach. Stoch Environ Res Risk Assess 23, 41–55 (2009). https://doi.org/10.1007/s00477-007-0194-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-007-0194-2

Keywords

Navigation