Skip to main content
Log in

Accounting for the uncertainty in the local mean in spatial prediction by Bayesian Maximum Entropy

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Bayesian Maximum Entropy (BME) has been successfully used in geostatistics to calculate predictions of spatial variables given some general knowledge base and sets of hard (precise) and soft (imprecise) data. This general knowledge base commonly consists of the means at each of the locations considered in the analysis, and the covariances between these locations. When the means are not known, the standard practice is to estimate them from the data; this is done by either generalized least squares or maximum likelihood. The BME prediction then treats these estimates as the general knowledge means, and ignores their uncertainty. In this paper we develop a prediction that is based on the BME method that can be used when the general knowledge consists of the covariance model only. This prediction incorporates the uncertainty in the estimated local mean. We show that in some special cases our prediction is equal to results from classical geostatistics. We investigate the differences between our approach and the standard approach for predicting in this common practical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bogaert P, D’Or D (2002) Estimating soil properties from thematic soil maps: the Bayesian Maximum Entropy approach. Soil Sci Soc Am J 66:1492–1500

    Article  CAS  Google Scholar 

  • Christakos G (1990) A Bayesian/maximum-entropy view to the spatial estimation problem. Math Geol 22(7):763–777

    Article  Google Scholar 

  • Christakos G (2000) Modern spatiotemporal geostatistics. Oxford University Press, New York

    Google Scholar 

  • Christakos G, Bogaert P, Serre ML (2002) Temporal GIS: advanced functions for field-based applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York

    Google Scholar 

  • Laslett GM, McBratney AB (1990) Estimation and implications of instrumental drift, random measurement error and nugget variance of soil attributes—a case study for soil pH. J Soil Sci 41:451–471

    Article  CAS  Google Scholar 

  • MATLAB (2004) MATLAB 7.0.1, The MathWorks Inc., Natick, MA

  • Orton TG, Lark RM (in press) Estimating the local mean for Bayesian Maximum Entropy by generalized least squares and maximum likelihood, and an application to the spatial analysis of a censored soil variable. Eur J Soil Sci. DOI 10.1111/j.1365-2389.2006.00800.x

  • Searle SR (1982) Matrix algebra useful for statistics. Wiley, New York

    Google Scholar 

  • Serre ML (1999) Environmental spatiotemporal mapping and groundwater flow modeling using the BME and ST methods. Ph.D. Thesis, University of North Carolina, Chapel Hill

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Biotechnology and Biological Sciences Research Council of the United Kingdom through its Core Strategic Grant to Rothamsted Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Orton.

Appendices

Appendix A

We begin with Eq. 8 for the prior:

$$ \begin{aligned} f_{O} {({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}})} &= {\int {f_{{G.m}} {({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}})}\hbox{d}m}} \\ & \propto {\int {\exp {\left\{{- \frac{1}{2}{({{\mathbf{z}}_{\rm shk} - {\mathbf{1}}_{\rm shk} m})}^{\rm T} {\mathbf{C}}^{-1}_{\rm shk} {({{\mathbf{z}}_{\rm shk} - {\mathbf{1}}_{\rm shk} m})}}\right\}}}}\hbox{d}m \\ &= {\int {\exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk} - 2m{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk} + m^{2} {\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right]}}\right\}}}}\hbox{d}m, \\ \end{aligned} $$
(A1)

We can take the term that is independent of m outside the integral:

$$\begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s},{\mathbf{z}}_{\rm h}, z_{\rm k}}\right)} &\propto \exp{\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm shk}{\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}\right\}} \\& {\int {\exp {\left\{{-\frac{{{\mathbf{1}}^{\rm T}_{\rm shk}{\mathbf{C}}^{-1}_{\rm shk}{\mathbf{1}}_{\rm shk}}}{2}{\left[{m^{2} -2m\frac{{{\mathbf{1}}^{\rm T}_{\rm shk}{\mathbf{C}}^{-1}_{\rm shk}{\mathbf{z}}_{\rm shk}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right]}}\right\}}}}\hbox{d}m, \\ \end{aligned} $$
(A2)

and then complete the square to write:

$$ \begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)} &\propto \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}\right\}} \\ & {\int {\exp {\left\{{- \frac{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}{2}{\left[{{\left({m - \frac{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right)}^{2} - {\left({\frac{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right)}^{2}}\right]}}\right\}}}}\hbox{d}m. \\ \end{aligned} $$
(A3)

Again, we take out the terms independent of m:

$$ \begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)} &\propto \exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk} - \frac{{{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}\right)}^{2}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right]}}\right\}} \\ & {\int {\exp {\left\{{\frac{{- 1}}{{2{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right)}^{{- 1}}}}{\left[{m - {\left({\frac{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right)}}\right]}^{2}}\right\}}}}\hbox{d}m.\\ \end{aligned} $$
(A4)

We now notice that the expression inside the integral is proportional to the Gaussian distribution for m with mean \({\frac{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}\) and variance \({\left({\mathbf{1}}_{\rm shk}^{\rm T} {\mathbf{C}}_{\rm shk}^{-1} {\mathbf{1}}_{\rm shk}\right)}^{- 1}\)—it is therefore given by:

$${\int {\exp {\left\{{\frac{{- 1}}{{2{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right)}^{{- 1}}}}{\left[{m - {\left({\frac{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right)}}\right]}^{2}}\right\}}}}\hbox{d}m = {\left({2\pi}\right)}^{{\frac{N}{2}}} {\left[{{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right)}^{{- 1}}}\right]}^{{\frac{1} {2}}},$$
(A5)

where N = n s + n h + 1. So

$$\begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)} & \propto \exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk} - \frac{{{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{z}}_{\rm shk}}\right)}^{2}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right]}}\right\}}{\left({2\pi}\right)}^{{\frac{N}{2}}} {\left[{{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right)}^{{- 1}}}\right]}^{{\frac{1}{2}}} \\ & \propto \exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm shk} {\left({{\mathbf{C}}^{-1}_{\rm shk} - \frac{{{\left({{\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}\right)}{\left({{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk}}\right)}}}{{{\mathbf{1}}^{\rm T}_{\rm shk} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}_{\rm shk}}}}\right)}{\mathbf{z}}_{\rm shk}}\right]}}\right\}} \\ & = \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{T}}{\mathbf{z}}_{\rm shk}}\right\}}, \\ \end{aligned} $$
(A6)

where T is given by Eq. 9.

Appendix B

Here, we derive the expression for the conditional distribution, f O (z s | z h, z k); with a similar expression for f O (z k | z h), this allows us to write Eq. 13. We begin with Eq. 8:

$$f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)} \propto \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm shk} {\mathbf{T}}{\mathbf{z}}_{\rm shk}}\right\}}.$$
(B1)

Now, since T is symmetric, we can write

$$\begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)}& \propto \exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm s} {\mathbf{T}}_{\rm s} {\mathbf{z}}_{\rm s} + {\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk} {\mathbf{z}}_{\rm hk} + 2{\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk,s} {\mathbf{z}}_{\rm s}}\right]}}\right\}} \\& = \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk} {\mathbf{z}}_{\rm hk}}\right\}}\exp {\left\{{- \frac{1}{2}{\left[{{\mathbf{z}}^{\rm T}_{\rm s} {\mathbf{T}}_{\rm s} {\mathbf{z}}_{\rm s} + 2{\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk,s} {\mathbf{z}}_{\rm s}}\right]}}\right\}}. \\ \end{aligned} $$
(B2)

Since the matrix T s is invertible (see Appendix C),

$$\begin{aligned} f_{O} {\left({{\mathbf{z}}_{\rm s}, {\mathbf{z}}_{\rm h}, z_{\rm k}}\right)}& \propto \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk} {\mathbf{z}}_{\rm hk}}\right\}} \\ &\exp {\left\{{- \frac{1}{2}{\left[{{\left({{\mathbf{z}}_{\rm s} + {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk}}\right)}^{\rm T} {\mathbf{T}}_{\rm s} {\left({{\mathbf{z}}_{\rm s} + {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk}}\right)} - {\mathbf{z}}^{\rm T}_{\rm hk} {\mathbf{T}}_{\rm hk,s} {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk}}\right]}}\right\}} \\& = \exp {\left\{{- \frac{1}{2}{\mathbf{z}}^{\rm T}_{\rm hk} {\left[{{\mathbf{T}}_{\rm hk} - {\mathbf{T}}_{\rm hk,s} {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk}}\right]}{\mathbf{z}}_{\rm hk}}\right\}} \\& \exp {\left\{{- \frac{1}{2}{\left({{\mathbf{z}}_{\rm s} + {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk}}\right)}^{\rm T} {\mathbf{T}}_{\rm s} {\left({{\mathbf{z}}_{\rm s} + {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk}}\right)}}\right\}}.\\ \end{aligned} $$
(B3)

Again, because T s is invertible, the second exponential term is proportional to the multivariate Gaussian distribution for z s with mean vector, \({{\user2{\upmu}}_{{\rm s}\left| {\rm hk}\right.} = - {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk} },\) and covariance matrix, \({{\user2{\Upsigma}}_{{\rm s}\left| {\rm hk}\right.} = {\mathbf{T}}^{-1}_{\rm s} }.\) Since the first exponential term is independent of z s, we can write

$$f_{O} {\left({{\mathbf{z}}_{\rm s} \left| {{\mathbf{z}}_{\rm h}, z_{\rm k}} \right.}\right)} = {\rm MVN}_{\rm s} {\left({- {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} {\mathbf{z}}_{\rm hk},{\mathbf{T}}^{{- 1}}_{\rm s}} \right)}.$$
(B4)

Appendix C

Here, we calculate the parameters for the conditional multivariate Gaussian distribution for z s that is inside the integral in Eq. 13, \({{\rm MVN}_{\rm s} {\left({- {\bf T}_{\rm s}^{-1} {\bf T}_{\rm s,hk} {\bf z}_{\rm hk},{\bf T}_{\rm s}^{{- 1}}}\right)}},\) in terms of the general knowledge covariance matrices. The parameters for the term outside the integral in this equation, \({N_{\rm k} {\left({- T_{\rm k}^{-1} {\bf T}_{\rm k,h} {\bf z}_{\rm h}, T_{\rm k}^{{- 1}}}\right)}},\) follow by a similar argument. To begin with, we calculate C −1shk , using the result for the inverse of a block matrix (Searle 1982):

$$\begin{aligned} {\mathbf{C}}^{-1}_{\rm shk} &= {\left[\begin{array}{*{20}l} {\mathbf{C}}_{\rm s} & {\mathbf{C}}_{\rm s,hk}\\ {\mathbf{C}}_{\rm hk,s}& {\mathbf{C}}_{\rm hk}\\ \end{array}\right]}^{{- 1}} \\ &= {\left[\begin{array}{*{20}l} {\left({{\mathbf{C}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}^{{- 1}} & - {\left({{\mathbf{C}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}^{{- 1}} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} \\ - {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\left({{\mathbf{C}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}^{{- 1}}& {\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\left({{\mathbf{C}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}^{{- 1}} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk}\\ \end{array}\right]}\\ &= {\left[ \begin{array}{*{20}l} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.}& - {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} \\ -{\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} &{\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk} \right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} \\ \end{array}\right]}. \\ \end{aligned} $$
(C1)

Equation 9 states

$${\mathbf{T}} = {\mathbf{C}}^{-1}_{\rm shk} - \frac{{{\left({{\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}}\right)}{\left({{\mathbf{1}}^{\rm T} {\mathbf{C}}^{-1}_{\rm shk}}\right)}}}{{{\mathbf{1}}^{\rm T} {\mathbf{C}}^{-1}_{\rm shk} {\mathbf{1}}}},$$
(C2)

which gives

$$\begin{aligned} {\mathbf{T}}_{\rm s}& = {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} - \frac{{{\left({{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{1}}_{\rm s} - {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}{\left({{\mathbf{1}}^{\rm T}_{\rm s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.}}\right)}}}{{{\left[{{\mathbf{1}}^{\rm T}_{\rm s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{1}}_{\rm s} + {\mathbf{1}}^{\rm T}_{\rm hk} {\left({{\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk}}\right)}{\mathbf{1}}_{\rm hk} - 2{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{1}}_{\rm s}}\right]}}} \\ &= {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} - \frac{{{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\left({{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}{\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.}}}{{{\left[{{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk} + {\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\left({{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}}\right]}}}. \\ \end{aligned} $$
(C3)

Now, the following identity for the inverse of a matrix (Searle 1982) is often referred to as the Sherman–Morrison–Woodbury identity:

$${\left({A + UGV}\right)}^{{- 1}} = A^{{- 1}} - A^{{- 1}} U{\left({G^{{- 1}} + VA^{{- 1}} U}\right)}^{{- 1}} VA^{{- 1}},$$
(C4)

where A and G are square invertible matrices and U and V matrices of the appropriate size to give UGV the same dimensions as A. Therefore, if we let:

$$\left. \begin{aligned}& A^{{- 1}} = {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} \\& U = {\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk} \\& V = {\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} \\& G^{{- 1}} = {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk} \\ \end{aligned}\right\},$$
(C5)

then we have

$$\begin{aligned} {\mathbf{T}}^{{- 1}}_{\rm s} &= A + UGV \\ &= {\mathbf{C}}_{{\rm s}\left| {\rm hk}\right.} + \frac{{{\left({{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}{\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}}}{{{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}}, \\ \end{aligned} $$
(C6)

which gives the covariance matrix, Eq. 16, for the multivariate Gaussian distribution in the integral of Eq. 14.

Now, for the mean vector, we must calculate T s,hk; from Eqs. C1 and C2 we have:

$$\begin{aligned} - {\mathbf{T}}_{\rm s,hk} &= {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} \\ &\quad+ \frac{{{\left[{{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{1}}_{\rm s} - {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right]}{\left[{- {\mathbf{1}}^{\rm T}_{\rm s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{1}}^{\rm T}_{\rm hk} {\left({{\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s} {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk}}\right)}}\right]}}}{{{\left[{{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk} + {\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\left({{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}}\right]}}} \\ &= {\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} \\ &\quad- \frac{{{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\left[{{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right]}{\left[{{\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}}\right]}}}{{{\left[{{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk} + {\left({{\mathbf{1}}^{\rm T}_{\rm s} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{C}}_{\rm hk,s}}\right)}{\mathbf{C}}^{-1}_{{\rm s}\left| {\rm hk}\right.} {\left({{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}\right)}}\right]}}}. \\ \end{aligned} $$
(C7)

We can write this in terms of the matrices in Eq. C5:

$$\begin{aligned} - {\mathbf{T}}_{\rm s,hk}& = A^{{- 1}} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} - \frac{{A^{{- 1}} U{\left[{VA^{{- 1}} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} - {\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}}\right]}}}{{{\left[{G^{{- 1}} + VA^{{- 1}} U}\right]}}} \\ &= {\left\{{A^{{- 1}} - \frac{{A^{{- 1}} UVA^{{- 1}}}}{{{\left[{G^{{- 1}} + VA^{{- 1}} U}\right]}}}}\right\}}{\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + \frac{{A^{{- 1}} U{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}}}{{{\left[{G^{{- 1}} + VA^{{- 1}} U}\right]}}} \\ &= {\mathbf{T}}_{\rm s} {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + \frac{{A^{{- 1}} U{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}}}{{{\left[{G^{{- 1}} + VA^{{- 1}} U}\right]}}}. \\ \end{aligned} $$
(C8)

So, multiplying Eqs. C6 and C8 gives:

$$\begin{aligned} - {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} &= {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + {\mathbf{T}}^{-1}_{\rm s} \frac{{A^{{- 1}} U{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}}}{{{\left({G^{{- 1}} + VA^{{- 1}} U}\right)}}} \\ &= {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + {\left({A + UGV}\right)}\frac{{A^{{- 1}} U}}{{{\left({G^{{- 1}} + VA^{{- 1}} U}\right)}}}{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}, \\ \end{aligned} $$
(C9)

and we can simplify the multiplying term:

$$\begin{aligned} {\left({A + UGV}\right)}\frac{{A^{{- 1}} U}}{{{\left({G^{{- 1}} + VA^{{- 1}} U}\right)}}}& = \frac{{U + UGVA^{{- 1}} U}}{{G^{{- 1}} + VA^{{- 1}} U}} \\ &= UG{\left({\frac{{G^{{- 1}} + VA^{{- 1}} U}}{{G^{{- 1}} + VA^{{- 1}} U}}}\right)} \\& = UG. \\ \end{aligned} $$
(C10)

So, we have

$$ \begin{aligned} - {\mathbf{T}}^{-1}_{\rm s} {\mathbf{T}}_{\rm s,hk} &= {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + UG{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} \\ &= {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} + {\left({\frac{{{\mathbf{1}}_{\rm s} - {\mathbf{C}}_{\rm s,hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}}{{{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk} {\mathbf{1}}_{\rm hk}}}}\right)}{\mathbf{1}}^{\rm T}_{\rm hk} {\mathbf{C}}^{-1}_{\rm hk}, \\ \end{aligned} $$
(C11)

which yields Eq. 15 for the mean of the multivariate Gaussian distribution for z s.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orton, T.G., Lark, R.M. Accounting for the uncertainty in the local mean in spatial prediction by Bayesian Maximum Entropy. Stoch Environ Res Risk Assess 21, 773–784 (2007). https://doi.org/10.1007/s00477-006-0089-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-006-0089-7

Keywords

Navigation