Skip to main content
Log in

Approximate methods for explicit calculations of non-Gaussian moments

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

We present theoretical tools from statistical physics for the calculation of non-Gaussian moments. In particular, we focus on the variational approximation and the cumulant expansion. These methods enable approximate but explicit moment calculations with non-Gaussian probability density functions (pdfs). Their use is illustrated by calculating the variance and the excess kurtosis for a univariate non-Gaussian pdf. We comment on the potential application of these methods in estimating the parameters of the recently proposed Spartan spatial random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamsen P (1997) A review of Gaussian random fields and correlation functions. Technical Report 917, 2nd edn. Norwegian Computing Center, Oslo

  • Adler RJ (1981) The geometry of random fields. Wiley, New York

    Google Scholar 

  • Barthelemy M, Orland H, Zerah G (1995) Propagation in random media: calculation of the effective dispersive permittivity by use of the replica method. Phys Rev E 52(1):1123–1127

    Article  CAS  Google Scholar 

  • Bochner S (1959) Lectures on fourier integrals. Princeton University Press, Princeton

    Google Scholar 

  • Chaikin PM, Lubensky TC (1995) Principles of condensed matter physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Christakos G (1992) Random field models in earth sciences. Academic, San Diego

    Google Scholar 

  • Creswick RJ, Farach HA, Poole CP (1991) Introduction to renormalization group methods in physics. Wiley, New York

    Google Scholar 

  • Feynman RP (1982) Statistical mechanics. Benjamin and Cummings, Reading

    Google Scholar 

  • Goldenfeld N (1993) Lectures on phase transitions and the renormalization group. Addison-Wesley, New York

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Hristopulos DT (2003a) Spartan Gibbs random field models for geostatistical applications. SIAM J Sci Comput 24:2125–2162

    Article  Google Scholar 

  • Hristopulos DT (2003b) Simulations of Spartan random fields. In: Simos TE (ed) Proceedings of the international conference of computational methods in sciences and engineering 2003. World Scientific, London, pp 242–247

  • Hristopulos DT (2003c) Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling. Adv Water Resour 26(12):1279–1308

    Article  Google Scholar 

  • Hristopulos DT, Christakos G (1997) A variational calculation of the effective fluid permeability of heterogeneous media. Phys Rev E 55(6):7288–7298

    Article  CAS  Google Scholar 

  • Hristopulos DT, Christakos G (2001) Practical calculation of non-Gaussian multivariate moments in spatiotemporal Bayesian maximum entropy analysis. Math Geol 33(5):543–568

    Article  Google Scholar 

  • Itzykson C, Drouffe J-M (1989) Statistical field theory, vol 1. Cambridge University Press, New York

  • Meurice Y (2002) Simple method to make asymptotic series of Feynman diagrams converge. Phys Rev Lett 88(14):1601–1604

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vettering WT, Flannery BP (1992) Numerical recipes in Fortran, vol 1. Cambridge University Press, New York

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York

    Google Scholar 

  • Sornette D (2003) Critical phenomena. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions I: basic results. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Greek Ministry of Education, Operational Programme for Education and Initial Vocational Training: Environment—Pithagoras II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Hristopulos.

Appendices

Appendix 1

Here we derive Eqs. 52 and 53. First, note that the following is true:

$$\langle ({\mathbf{J}} \cdot {\mathbf{X}})^{m} \rangle_{0} = \langle J_{i_{1}} X_{i_{1}} J_{i_{2}} X_{i_{2}} \cdots J_{i_{m}} X_{i_{m}} \rangle_{0} = J_{i_{1}} \cdots J_{i_{m}} \langle X_{i_{1}} \cdots X_{i_{m}} \rangle_{0} $$
(82)

In Eq. 82 summation is implied over the repeated indexes i l =1,...,m. The external field variables \(J_{i_{l}},\) l=1,...,m are moved outside the angled brackets, since they do not participate in the averaging. The derivatives act only on the external field, not the quantity inside the angled brackets. Let us assume that we are interested in the m-order partial derivative \(\partial^{m} ({\mathbf{J}} \cdot {\mathbf{X}})^{m}/\partial J_{i^{*}_{1}} \cdots J_{i^{*}_{m}}.\) The locations i *1 ··· i * m correspond to fixed locations (unlike i 1 ··· i m which are variable). It is not required that all i * k be different, in fact they can all denote the same location. Then, we obtain

$$\begin{aligned} \frac{\partial \left({\mathbf{J}} \cdot \langle {\mathbf{X}} \rangle_{0} \right)^{m}}{\partial J_{i^{*}_{1}}} =& \delta_{i_{1},i^{*}_{1}} \left(\prod\limits_{i_{k}\neq i^{*}_{1}} J_{i_{k}} \right) \langle X_{i^{*}_{1}} \cdots X_{i_{m}} \rangle_{0} + \delta_{i_{2},i^{*}_{1}} \left(\prod\limits_{i_{k}\neq i^{*}_{1}} J_{i_{k}} \right) \langle X_{i_{1}} X_{i^{*}_{1}} \cdots X_{i_{m}} \rangle_{0} \\ & \cdots + \delta_{i_{m},i^{*}_{1}} \left(\prod\limits_{i_{k}\neq i^{*}_{1}} J_{i_{k}} \right) \langle X_{i_{1}} \cdots X_{i^{*}_{1}} \rangle_{0} = m \left(\prod\limits_{i_{k}\neq i^{*}_{1}} J_{i_{k}} \right) \left\langle X_{i^{*}_{1}} \prod _{i_{k}\neq i^{*}_{1}} X_{i_{k}} \right\rangle_{0}. \\ \end{aligned}$$
(83)

We repeat the procedure m−1 times to obtain

$$\frac{\partial^{m} \left({\mathbf{J}} \cdot \langle {\mathbf{X}} \rangle_{0}\right)^{m}}{\partial J_{i^{*}_{1}} \cdots \partial J_{i^{*}_{m}}} = m! \langle X_{i^{*}_{1}} \cdots X_{i^{*}_{m}} \rangle_{0}. $$
(84)

The same can be shown by induction, i.e., by showing (1) that Eq. 52 holds for m=1, and (2) provided that Eq. 52 is valid for m−1, then it is also valid for m. Equation 53 is also proved by this approach.

Appendix 2

The fourth order cumulant is given by Eq. 50, i.e., v 4=〈V 40 − 4〈V 30V0 −3〈V 2 20 +12〈V 20V 20 − 6〈V 40 . Since 〈V0=〈H pert0, terms that are proportional to 〈V m0 , where m>1 are nonlinear in H pert and do not contribute. Hence, only the terms 〈V 40 and −3〈V 2 20 contribute to the active cumulant, given by Eq. 64. The latter is evaluated as follows.

Given that V=−H pert+i J·X, the first term in the active cumulant v4 is given by

$$\langle V^{4} \rangle_{0} = \langle H^{4}_{\rm pert} \rangle_{0}+4 i \langle H^{3}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})\rangle_{0} - 6 \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} - 4 i \langle H_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}}) \rangle_{0} + \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{4} \rangle_{0}. $$
(85)

Of the terms in Eq. 85, the first three are of order O(H 2pert ), while the third vanishes after repeated differentiation. Hence, only the term 〈(J·X)40 contributes to Eq. 64.

The second term in v4 is

$$\begin{aligned} -3 \langle V^{2} \rangle_{0}^{2} =& 5 \langle H^{4}_{\rm pert}\rangle_{0} \langle H_{\rm pert}\rangle_{0} - 20 i \langle H^{3}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})\rangle_{0} \langle H_{\rm pert}\rangle_{0} - 30 \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} \langle H_{\rm pert}\rangle_{0}\\ & + 20 i \langle H_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{3} \rangle_{0} \langle H_{\rm pert} \rangle_{0} +5 \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{4} \rangle_{0} \langle H_{\rm pert} \rangle_{0}.\\ \end{aligned} $$
(86)

Only the last term in Eq. 86, which is equal to 5 〈(J·X)40H pert0, contributes to linear order in H pert and is included in Eq. 66.

Next, we obtain the active fifth cumulant given by Eq. 66. The contributing terms of the fifth cumulant are given by v5=〈V 50 − 5〈V 40V0−10〈V 30V 20+30〈V 2 20 V0. The first term in the active cumulant v5 is given by

$$\begin{aligned} \langle V^{5} \rangle_{0} =& - \langle H^{5}_{\rm pert} \rangle_{0} + 5 i \langle H^{4}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})\rangle_{0} + 10 \langle H^{3}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} - 10 i \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{3} \rangle_{0} \\ & -5\langle H_{\rm pert}({\mathbf{J}} \cdot {\mathbf{X}})^{4} \rangle_{0} + i \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{5} \rangle_{0}. \\ \end{aligned}$$
(87)

Of the terms in Eq. 87, the first four are of order O(H 2pert ), while the last one vanishes after differentiation at the limit J=0. Hence, only the term −5〈H pert(J·X)40 contributes to Eq. 66.

The second term in v5 is

$$\begin{aligned} -5\langle V^{4}\rangle_{0} \langle V \rangle_{0} =& 5 \langle H^{4}_{\rm pert}\rangle_{0} \langle H_{\rm pert}\rangle_{0} -20 i \langle H^{3}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})\rangle_{0} \langle H_{\rm pert}\rangle_{0} - 30 \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} \langle H_{\rm pert}\rangle_{0}\\ & + 20 i \langle H_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{3} \rangle_{0} \langle H_{\rm pert}\rangle_{0} + 5 \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{4} \rangle_{0} \langle H_{\rm pert}\rangle_{0}.\\ \end{aligned} $$
(88)

Only the last term in Eq. 88, which is equal to 5〈(J·X)40H pert0, contributes to linear order in H pert and is included in Eq. 66.

The third term in v5 is

$$\begin{aligned} - 10\langle V^{3} \rangle_{0} \langle V^{2} \rangle_{0} =& 10 \langle H^{3}_{\rm pert} \rangle_{0} \langle H^{2}_{\rm pert}\rangle_{0} - 30 i \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0} \langle H^{2}_{\rm pert}\rangle_{0}\\ & -30 \langle H_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} \langle H^{2}_{\rm pert}\rangle_{0} + 10 i \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{3} \rangle_{0} \langle H^{2}_{\rm pert}\rangle_{0} \\ =& - 10 \langle H^{3}_{\rm pert}\rangle_{0} \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0} + 30 i \langle H^{2}_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0} \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0}\\ & + 30 \langle H_{\rm pert} ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0} - 10 i \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{3} \rangle_{0} \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0}.\\ \end{aligned} $$
(89)

Of the eight terms in Eq. 89, only the second to last term, which is equal to 30 〈H pert (J·X)20 〈(J·X)20 contributes to Eq. 66.

The fourth term in v5 is

$$ 30\langle V^{2}\rangle_{0}^{2} \langle V \rangle_{0} = 30 \langle H^{2}_{\rm pert}\rangle_{0}^{2} \langle H_{\rm pert}\rangle_{0} + 30 \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2}\rangle_{0}^{2} \langle H_{\rm pert}\rangle_{0} - 60 \langle H^{2}_{\rm pert} \rangle_{0} \langle ({\mathbf{J}} \cdot {\mathbf{X}})^{2} \rangle_{0} \langle H_{\rm pert}\rangle_{0}. $$
(90)

Of the three terms in Eq. 90 only the second term, which is equal to 30〈(J·X)2 20 H pert0, contributes to Eq. 66.

Appendix 3

The numerical evaluation of the moment integrals in Sect. 7 of the general form

$$I_{n} = 2 \int\limits_{0}^{\infty} \hbox{d}x\,x^{n} \hbox{e}^{-\alpha x^{2} -\beta x^{4}}, $$
(91)

involves an infinite integration domain x∈[0,∞). The integrated function decays very rapidly at large values of x, and is practically different than zero in a narrow range, which depends strongly on the value of the non-Gaussian coefficient β. To overcome numerical errors due to this dependence, we transform the integral I n using the change of variable y=1/x as follows:

$$I_{n} = 2 \int\limits_{0}^{1} \hbox{d}x\, x^{n} \hbox{e}^{-\alpha x^{2} -\beta x^{4}} + 2 \int\limits_{\epsilon}^{1} \hbox{d}y \frac{\hbox{e}^{-\alpha/y^{2} - \beta/y^{4}}}{y^{n+2}}. $$
(92)

The integrand of the second term is zero at y=0 (because the numerator tends to zero exponentially while the denominator only as power law) and rises smoothly. As a result, it is possible to replace the lower limit of integration with a very small number ε (e.g., 10−16), to avoid the numerically undetermined division with zero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristopulos, D.T. Approximate methods for explicit calculations of non-Gaussian moments. Stoch Environ Res Ris Assess 20, 278–290 (2006). https://doi.org/10.1007/s00477-005-0023-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-005-0023-4

Keywords

Navigation