Skip to main content

Advertisement

Log in

The role of tree landscape to reduce effects of urban heat islands: a study in two Brazilian cities

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The growth of large cities has, in its relationship with the natural environment, caused environmental impacts that have severely transformed the local climate and influenced human well-being. The purpose of this research was to examine the variation of temperature using remote sensing, seeking to identify urban heat islands and the spatial distribution of the green infrastructure, focusing on urban trees. Curitiba was selected for this study, because the city received in 1990 the United Nations Environment Program award and is considered the “Ecological Capital” of Brazil. On the other hand, São Paulo was selected, because it is the largest city in South America. Landsat satellite images on vegetation coverage and urban thermic comfort index methods were used to track the hotter regions and greenery all over the cities. The benefits of urban trees were also estimated by i-Tree Canopy with regard to improve air quality. Besides protected areas, mainly where there are urban fragments of forest, some high-income neighborhoods are benefited by the green cover. The results highlighted that both cities, Curitiba and São Paulo, require effective governance practices to produce patterns of environmental justice, implementing green spaces in a balanced way for the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: https://www.timeanddate.com/weather/brazil/curitiba/climate

Fig. 3
Fig. 4

Source: https://www.timeanddate.com/weather/brazil/curitiba/climate

Fig. 5

Source: https://www.timeanddate.com/weather/brazil

Fig. 6
Fig. 7

Source: Authors from USGS—Curitiba scene 220-078, registered on 30th Dec 2019

Fig. 8

Source: Authors from USGS—São Paulo scene 219-076, dated 21st Jan 2019

Fig. 9

Source: Authors

Fig. 10

Source: Authors

Fig. 11

Source: Authors

Fig. 12

Source: Authors

Fig. 13

Source: Authors from i-Three Canopy website

Fig. 14

Source: Authors from i-Three Canopy website

Fig. 15

Source: Adapted from https://www.curitiba.pr.gov.br/conteudo/historico/2763

Fig. 16

Source: https://gestaourbana.prefeitura.sp.gov.br/marco-regulatorio/plano-diretor

Similar content being viewed by others

Data availability

All reconstructed map files are available from the first author on reasonable request.

References

  • Amorim MCDCT (2018) Spatial variability and intensity frequency of surface heat island in a Brazilian city with continental tropical climate through remote sensing. Remote Sens Appl Soc Environ 9:10–16

    Google Scholar 

  • Amorim MCDCT, Dubreuil V (2017) Intensity of urban heat islands in tropical and temperate climates. Climate 5(4):91

    Article  Google Scholar 

  • Avdan U, Jovanovska G (2016) Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sens. Article ID1480307.

  • Barros HR, Lombardo MA (2016) A ilha de calor urbana e o uso e cobertura do solo no município de São Paulo-SP. Geouspespaço e Tempo (online) 20(1):160–177

    Article  Google Scholar 

  • Biondi D, de Lima Neto EM (2012) Distribuição espacial e toponímia das praças de Curitiba-PR. Revista Da Sociedade Brasileira De Arborização Urbana 7(3):31–43

    Article  Google Scholar 

  • Bonduki N (2011) The urban development model of São Paulo needs to be reversed. Estudos Avançados 25:23–36

    Article  Google Scholar 

  • Buckeridge M (2015) Árvores urbanas em São Paulo: planejamento, economia e água. Estudos Avançados 29(84):85–101

    Article  Google Scholar 

  • Cardoso-Gustavson P, Fernandes FF, Alves ES, Victorio MP, Moura BB, Domingos M, Figueiredo AMG et al (2016) Tillandsia usneoides: a successful alternative for biomonitoring changes in air quality due to a new highway in São Paulo, Brazil. Environ Sci Pollut Res 23(2):1779–1788

    Article  CAS  Google Scholar 

  • Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate conditions. Science 341(6145):486–492

    Article  CAS  PubMed  Google Scholar 

  • Dumke EMS (2007) Clima urbano/conforto térmico e condições de vida na cidade: uma perspectiva a partir do aglomerado urbano da Região Metropolitana de Curitiba (AU-RMC). Doutorado em Meio Ambiente e Desenvolvimento, Universidade Federal do Paraná, p 417

  • EPA USEPA (2008) Heat Island Compendium. In: Heat island compendium. https://www.epa.gov/heat-islands/heat-island-compendium. Accessed 2 Feb 2021

  • Escobedo FJ, Giannico V, Jim CY, Sanesi G, Lafortezza R (2019) Urban forests, ecosystem services, green infrastructure and nature-based solutions: nexus or evolving metaphors? Urban for Urban Green 37:3–12

    Article  Google Scholar 

  • Farhadi H, Faizi M, Sanaieian H (2019) Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustain Cities Soc 46:101448

    Article  Google Scholar 

  • Ferreira LS (2019) Vegetação, temperatura de superfície e morfologia urbana: um retrato da região metropolitana de São Paulo. Doutorado em Tecnologia da Arquitetura, Universidade de São Paulo, p 195

  • Grise MM, Biondi D, Araki H (2017) A floresta urbana da cidade de Curitiba-PR. Floresta 46(4):425–438

    Article  Google Scholar 

  • Heaviside C, Macintyre H, Vardoulakis S (2017) The urban heat island: implications for health in a changing environment. Curr Environm Health Rep 4(3):296–305

    Article  Google Scholar 

  • Hilde T, Paterson R (2014) Integrating ecosystem services analysis into scenario planning practice: Accounting for street tree benefits with i-Tree valuation in Central Texas. J Environ Manag 146:524–534

    Article  Google Scholar 

  • Hirabayashi S (2014) i-Tree Canopy air pollutant removal and monetary value model descriptions. The Davey Institute, Syracuse, New York, p 11. https://www.itreetools.org/documents/560/i-Tree_Canopy_Air_Pollutant_Removal_and_Monetary_Value_Model_Descriptions.pdf. Accessed 20 Apr 2021.

  • IBGE—Instituto Brasileiro de Geografia e Estatística (2020) Estimativas da População. https://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2020/POP2020_20210331.pdf. Accessed 23 Jan 2021

  • IPCC—Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.researchgate.net/profile/Paul-Van-Der-Linden/publication/220042209_Climate_Change_2007_Impacts_Adaptation_and_Vulnerability/links/54f59db30cf2eed5d738b3ad/Climate-Change-2007-Impacts-Adaptation-and-Vulnerability.pdf. Accessed 20 May 2021

  • I-Tree (2018) i-Tree Canopy. https://canopy.itreetools.org/. Accessed 2 Feb 2021

  • Jacobs B, Mikhailovich N, Delaney C (2014) Benchmarking Australia's urban tree canopy: an i-Tree assessment, Final Report, p 44p. https://opus.lib.uts.edu.au/handle/10453/37506. Accessed 18 May 2021

  • Kleerekoper L, Van Esch M, Salcedo TB (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38

    Article  Google Scholar 

  • Köppen W, Geiger R (1930) Manual of climatology. Borntraeger brothers. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Krüger E, Rossi F (2015) Quantificação da ilha de calor de Curitiba considerando aspectos de estabilidade atmosférica. Revista Brasileira De Meteorologia 30(4):394–404

    Article  Google Scholar 

  • Locosselli GM, de Camargo EP, Moreira TCL, Todesco E, de Fátima Andrade M, de André CDS, Buckeridge MS et al (2019) The role of air pollution and climate on the growth of urban trees. Sci Total Environ 666:652–661

    Article  CAS  PubMed  Google Scholar 

  • MEA—Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: our human planet—summary for decision makers. Island Press, Washington, DC, p 54

  • Mendonça F, Dubreuil V (2005) Termografia de superfície e temperatura do ar na RMC (região metropolitana de Curitiba/PR). Raega-O Espaço Geográfico Em Análise 9:25–35

    Article  Google Scholar 

  • Mendonça F (2002) Aspectos da problemática ambiental urbana da cidade de Curitiba/PR e o mito da “Capital Ecológica”. GEOUSP–Espaço e Tempo 2:1–8

  • Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J (2018) Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban for Urban Green 29:40–48

    Article  Google Scholar 

  • Nuruzzaman M (2015) Urban heat island: causes, effects and mitigation measures—a review. Int J Environ Monit Anal 3(2):67–73

    Google Scholar 

  • Parmehr EG, Amati M, Taylor EJ, Livesley SJ (2016) Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban for Urban Green 20:160–171

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

    Article  CAS  PubMed  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jędrzejewska B, Lima M, Kausrud K (2011) The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Clim Res 46(1):15–27

    Article  Google Scholar 

  • Richards DR, Fung TK, Belcher RN, Edwards PJ (2020) Differential air temperature cooling performance of urban vegetation types in the tropics. Urban for Urban Green 50:126651

    Article  Google Scholar 

  • Ruble BA (2012) The Challenges of the 21st-century city. Wilson Center, Washington, DC, p 4. https://www.alnap.org/system/files/content/resource/files/main/policy-briefthe-challenges-of-the-21st-century-city.pdf. Accessed 23 Jan 2021

  • Santos AR, Oliveira FS, Silva AG, Gleriani JM, Gonçalves W, Moreira GL, Mota PHS et al (2017) Spatial and temporal distribution of urban heat islands. Sci Total Environ 605:946–956

    Article  PubMed  Google Scholar 

  • Sarricolea P, Meseguer-Ruiz O (2019) Urban climates of large cities: comparison of the urban heat island effect in Latin America. In: Henríquez C, Romero H (eds) Urban climates in Latin America. Springer International Publishing, Cham, pp 17–32

    Chapter  Google Scholar 

  • Siemens AG—Corporate Communications and Government Affairs (2010) Curitiba is Latin America's greenest metropolis, Munich. Reference number: AXX201011.20 e. https://press.siemens.com/global/en/pressrelease/curitiba-latin-americas-greenest-metropolis-latin-american-green-city-index-measures. Accessed 20 May 2021

  • Speak A, Montagnani L, Wellstein C, Zerbe S (2020) The influence of tree traits on urban ground surface shade cooling. Landsc Urban Plan 197:103748

    Article  Google Scholar 

  • USGS (2021) Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/corescience-systems/nli/landsat/using-usgs-landsat-level-1-data-product. Accessed 25 Jan 2021

  • Yue W, Liu X, Zhou Y, Liu Y (2019) Impacts of urban configuration on urban heat island: An empirical study in China mega-cities. Sci Total Environ 671:1036–1046

    Article  CAS  Google Scholar 

  • Zaitunah A, Ahmad AG, Safitri RA (2018) Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conf Ser Earth Environ Sci 126(1):012112

    Article  Google Scholar 

  • Zhang J, Wang Y, Li Y (2006) A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Comput Geosci 32(10):1796–1805

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank São Paulo Research Foundation (FAPESP) for financial support under the Project Number 2020/05383-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreza Portella Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict-of-interest statement.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, A.P., Bollmann, H.A., de Oliveira, A. et al. The role of tree landscape to reduce effects of urban heat islands: a study in two Brazilian cities. Trees 37, 17–30 (2023). https://doi.org/10.1007/s00468-021-02230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02230-8

Keywords

Navigation