Skip to main content
Log in

Identification, molecular characterization, and expression analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family in Betula platyphylla Suk.

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

20 SPL genes were identified in Betula platyphylla Suk., and their sequence features and expression profiles provide useful information for further studies on their function.

Abstract

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL), a family of plant-specific transcription factors, plays a vital regulatory role in plant growth and development. However, information on SPL genes is largely undefined in Betula platyphylla Suk., an economically important tree species in China. Twenty full-length open read frames of SPL genes in B. platyphylla were identified and designated BplSPL1 to BplSPL20. Phylogenetic analyses showed that the genes were divided into eight groups. In addition, 12 BplSPL genes were suggested to be putative targets of miR156. Tissue-specific expression analysis of BplSPL genes indicated diverse spatiotemporal expression patterns. Most BplSPL genes had high transcription levels in leaves, female inflorescences, and male inflorescences. BplSPLs showed significant differences in male development, indicating that these genes may play different roles in this development process. Most miR156-targeted BplSPLs genes were gradually downregulated as female development progressed, whereas the expression levels of miR156 increased during female inflorescence development. This indicated that the miR156/SPL module plays an important role in female development. We also discussed the possible roles that BplSPL genes may play in leaves. Taken as a whole, these results provide a molecular basis for the further functional study of SPL genes in B. platyphylla and are a supplement to the systematic analysis of SPL genes in forest tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SPL:

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE

NLS:

Nuclear localization signal

MW:

Molecular weight

NM:

Normal male inflorescences

F:

Female inflorescences

MM:

Mutant male inflorescences

MFE:

Minimal folding free energy

Reference

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergonzi S, Albani MC, Ver LVTE, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–1097

    CAS  PubMed  Google Scholar 

  • Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK (2014) MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol 164:1011–1027

    CAS  PubMed  Google Scholar 

  • Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104

    CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 392:W155–W159

    Google Scholar 

  • Ferreira ESG, Silva EM, Azevedo MS, Guivin MA, Ramiro DA, Figueiredo CR, Carrer H, Peres LE, Nogueira FT (2014) microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J 78:604–618

    Google Scholar 

  • Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt DE, Vatamaniuk OK (2013) The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Metallomics 5:1262–1275

    CAS  PubMed  Google Scholar 

  • He J, Xu M, Willmann MR, McCormick K, Hu T, Yang L, Starker CG, Voytas DF, Meyers BC, Poethig RS (2018) Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genet 14:e1007337

    PubMed  PubMed Central  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–203

    CAS  PubMed  Google Scholar 

  • Jung JH, Ju Y, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69:577–588

    CAS  PubMed  Google Scholar 

  • Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250:7–16

    CAS  PubMed  Google Scholar 

  • Lannenpaa M, Janonen I, Holtta-Vuori M, Gardemeister M, Porali I, Sopanen T (2004) A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 120:491–500

    PubMed  Google Scholar 

  • Li C, Lu S (2014) Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol 14:131

    PubMed  PubMed Central  Google Scholar 

  • Li J, Hou H, Li X, Xiang J, Yin X, Gao H, Zheng Y, Bassett CL, Wang X (2013) Genome-wide identification and analysis of the SBP-box family genes in apple (Malus x domestica Borkh.). Plant Physiol Biochem 70:100–114

    CAS  PubMed  Google Scholar 

  • Li XY, Lin EP, Huang HH, Niu MY, Tong ZK, Zhang JH (2018) Molecular Characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family in Betula luminifera. Front Plant Sci 9:608

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang CP (2006) Temporal characteristics of developmental cycles of female and male flowers in Betula platyphylla in Northeastern China. Sci Silvae Sin 42(12):28–33

    Google Scholar 

  • Liu X, Liu Y, Liu C, Guan M, Yang C (2015) Identification of genes associated with male sterility in a mutant of white birch (Betula platyphylla Suk.). Gene 574:247–254

    CAS  PubMed  Google Scholar 

  • Liu C, Guan M, Hu X, Tian J, Liu X (2017a) Complex regulatory network of Betula BplSPL8 in planta. J Forest Res 28:881–889

    CAS  Google Scholar 

  • Liu J, Cheng X, Liu P, Sun J (2017b) miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174:1931–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wu X, Long J, Guo W (2017c) Genomic characterization of miR156 and SQUAMOSA promoter binding protein-like genes in sweet orange (Citrus sinensis). Plant Cell Tiss Org 130:103–116

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25:402–408

    CAS  Google Scholar 

  • Long J, Liu C, Feng M, Liu Y, Wu X, Guo W (2018) miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus (vol. 69, pg. 2979, 2018). J Exp Bot 69:4141

    PubMed  PubMed Central  Google Scholar 

  • Preston JC, Jorgensen SA, Orozco R, Hileman LC (2016) Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia. Planta 243:429–440

    CAS  PubMed  Google Scholar 

  • Salojarvi J, Smolander OP, Nieminen K, Kangasjarvi J et al (2017) Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat Genet 49:904–912

    CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol 50:2133–2145

    CAS  PubMed  Google Scholar 

  • Stone JM, Liang X, Nekl ER, Stiers JJ (2005) Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 41:744–754

    CAS  PubMed  Google Scholar 

  • Sun Z, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M, Zhou B, Zhang L, Kong F, Liu B, Tong Y, Li X (2019) Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J 17(1):50–62

    CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Rokhsar D et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313:1596–1604

    CAS  PubMed  Google Scholar 

  • Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    CAS  PubMed  Google Scholar 

  • Wang L, Liu N, Wang T, Li J, Wen T, Yang X, Lindsey K, Zhang X (2018) The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot 69:1081–1093

    CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Salinas M, Garcia-Molina A, Hohmann S, Berndtgen R, Huijser P (2013) SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant J 75:566–577

    CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Yokoyama S et al (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337:49–63

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22:2322–2335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Galvao VC, Zhang YC, Horrer D, Zhang TQ, Hao YH, Feng YQ, Wang S, Schmid M, Wang JW (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors. Plant Cell 24:3320–3332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Niu QW, Ng KH, Chua NH (2015) The role of miR156/SPLs modules in Arabidopsis lateral root development. Plant J 83:673–685

    CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    CAS  PubMed  Google Scholar 

  • Zhang Y, Schwarz S, Saedler H, Huijser P (2007) SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol Biol 63:429–439

    CAS  PubMed  Google Scholar 

  • Zhang B, Liu X, Zhao G, Mao X, Li A, Jing R (2014) Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development. J Integr Plant Biol 56:571–581

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Yan Zhang and Minxiao Guan for providing the transcriptome data. We are also grateful to Ruihai Chai and Prof. Chenghao Li for critical reading and advice on the manuscript.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (2572015EA05), the Fundamental Research Funds for the Central Universities (2572017AA01) and the National Natural Science Foundation of China (J1210053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by R. Guy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Characteristics of predicted proteins of BplSPLs compared to AtSPLs and PtSPLs (EPS 623 kb)

Fig. S2

Multiple sequence alignments and sequence logos for the SBP domains of BplSPL genes. The two zinc fingers (Zn-1/2) and a nuclear localization signal (NLS) are shown. Multiple sequence alignment was performed using BioEdit. Sequence logos were obtained from Weblogo online software. Red boxes indicate the conserved sites of zinc fingers (EPS 1811 kb)

Fig. S3

Alignment of complete BplSPL peptides. The DNA-binding domain is boxed, and acidic amino acids in the N-termini are marked by red triangles (PDF 4613 kb)

Fig. S4

Motif compositions of B. platyphylla SPL genes. Schematic representation of the conserved motifs as predicted using MEME, with groupings based on the phylogenetic tree. Each colored box with a number represents a conserved motif. Box size indicates motif length (EPS 1216 kb)

Fig. S5

Sequence alignment of corrected BplSPL sequences obtained by cloning and the corresponding sequences from the transcriptome data (PDF 10328 kb)

Fig. S6

The secondary structures of miR156 precursors in B. platyphylla. miR156 mature sequences are shown in red (EPS 1106 kb)

Fig. S7

Sequence alignment of BplmiR156 complementary sequences within the BplSPL genes. BplSPL gene names in black indicate that the miR156 binding sites are in their coding regions; names in red indicate genes with miR156 binding sites in their 3′UTRs (EPS 696 kb)

Table S1

Sequences of primers used for cloning (XLSX 9 kb)

Table S2

Sequences of primers used for qRT-PCR (XLSX 10 kb)

Table S3

Differentially expressed BplSPLs among the three types of inflorescences based on transcriptome analysis (XLSX 11 kb)

Table S4

PtSPL and AtSPL gene names and basic information (XLSX 11 kb)

Table S5

Consensus sequences of 15 motifs identified in the BplSPLs (DOC 38 kb)

Table S6

Mature sequences and precursors of miR156 in B. platyphylla (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, C., Tian, J. et al. Identification, molecular characterization, and expression analysis of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family in Betula platyphylla Suk.. Trees 34, 229–241 (2020). https://doi.org/10.1007/s00468-019-01913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-019-01913-7

Keywords

Navigation