Skip to main content
Log in

A case study on the vertical and diurnal variation of stem CO2 effluxes in an Amazonian forest tree

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Dial and vertical patterns of stem CO2 efflux are highly variable in tropical trees. Thus, tree level respiratory carbon fluxes remain a defective measure within the forest carbon budget.

Abstract

Vertical profile measurements of stem CO2 efflux (Estem) were conducted on a Scleronema micranthum tree growing in an old growth terra firme forest in the Central Amazon. A commonly applied portable closed dynamic chamber system was used to assess vertical and diurnal variations of Estem at 0.75, 1.3, 3.5, 7 and 14 m tree trunk height. The highest mean Estem was measured at the tree base at 0.75 m. Averaging all measurements over the entire study period, mean effluxes constantly decreased to a height of 3.5 m and increased again the further the measurements reached to the tree top. On average Estem was higher at night and started to decrease with the ascending xylem sap and elevating air temperature in the early morning. Estem did not follow any predictable pattern during the rest of the day, especially at the higher parts of the tree stem. Predicting autotrophic respiratory processes in tropical tree stems remains a challenge and is one of the unsecure estimates in the forest carbon budget in terrestrial tropical ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aparecido LMT, dos Santos J, Higuchi N, Kunert N (2015) Ecological applications of differences in the hydraulic efficiency of palms and broad-leaved trees. Trees 29(5):1431–1445

    Article  Google Scholar 

  • Asao S, Bedoya-Arrieta R, Ryan MG (2015) Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest. Tree Physiol 35(2):148–159

    Article  CAS  PubMed  Google Scholar 

  • Aubrey DP, Teskey RO (2009) Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol 184(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, Anne McGuire M, Aubrey DP, Teskey RO, Steppe K (2013a) Internal recycling of respired CO2 may be important for plant functioning under changing climate regimes. Plant Signal Behav 8(12):e27530

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013b) Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. J Exp Bot 64(8):2129–2138

    Article  CAS  PubMed  Google Scholar 

  • Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K (2013c) Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees. New Phytol 197(2):555–565

    Article  CAS  PubMed  Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2006) Wood CO2 efflux in a primary tropical rain forest. Glob Change Biol 12(12):2442–2458

    Article  Google Scholar 

  • Chambers JQ et al (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14(4 supplement):72–88

    Article  Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann For Sci 42(2):193–200

    Article  Google Scholar 

  • Graves SJ, Rifai SW, Putz FE (2014) Outer bark thickness decreases more with height on stems of fire-resistant than fire-sensitive Floridian oaks (Quercus spp.; Fagaceae). Am J Bot 101(12):2183–2188

    Article  PubMed  Google Scholar 

  • Katayama A et al (2014) Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. Tree Physiol 34(5):503–512

    Article  CAS  PubMed  Google Scholar 

  • Katayama A et al (2016) Characteristics of wood CO2 efflux in a Bornean tropical rainforest. Agric For Meteorol 220:190–199

    Article  Google Scholar 

  • Kunert N, Edinger J (2015) Xylem sap flux affects conventional stem CO2 efflux measurements in tropical trees. Biotropica 47(6):650–653

    Article  Google Scholar 

  • Kunert N, Mercado Cardenas A (2012) Effects of xylem water transport on CO2 efflux of woody tissue in a tropical tree. Amazonas State Brazil Hoehnea 39(1):139–144

    Article  Google Scholar 

  • Kunert N, Barros P, Higuchi N (2013) Do palm water use characteristics explain the spatial distribution of palms in the Central Amazon? Acta Hort 991:197–204

    Article  Google Scholar 

  • Kunert N, Aparecido LMT, Higuchi N, Santos JD, Trumbore S (2015) Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric For Meteorol 213(0):183–192

    Article  Google Scholar 

  • Levy PE, Meir P, Allen SJ, Jarvis PG (1999) The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol 19(1):53–58

    Article  PubMed  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100(1):65–75

    Article  CAS  Google Scholar 

  • Marthews T et al (2012) Measuring tropical forest carbon allocation and cycling: a RAINFOR-GEM field manual for intensive census plots (v2.2), manual, global ecosystems monitoring network

  • Medhurst J et al (2006) A whole-tree chamber system for examining tree-level physiological responses of field-grown trees to environmental variation and climate change. Plant Cell Environ 29(9):1853–1869

    Article  CAS  PubMed  Google Scholar 

  • Paine CET et al (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24(6):1202–1210

    Article  Google Scholar 

  • Robertson AL et al (2010) Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16(12):3193–3204

    Article  Google Scholar 

  • Stahl C, Burban B, Goret J-Y, Bonal D (2011) Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana. Ann For Sci 68(4):771–782

    Article  Google Scholar 

  • Tarvainen L, Räntfors M, Wallin G (2014) Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiol 34(5):488–502

    Article  CAS  PubMed  Google Scholar 

  • Teskey RO, McGuire MA (2002) Carbon dioxide transport inxylem causes errors in estimation of rates of respiration in stemsand branches of trees. Plant Cell Environ 25(11):1571–1577

    Article  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. New Phytol 177(1):17–32

    CAS  PubMed  Google Scholar 

  • Trumbore SE, Angert A, Kunert N, Muhr J, Chambers JQ (2013) What’s the flux? Unraveling how CO2 fluxes from trees reflect underlying physiological processes. New Phytol 197(2):353–355

    Article  CAS  PubMed  Google Scholar 

  • Zhu LW et al (2012) Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees 26(2):535–542

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Jeff Chambers for very helpful discussions about trunk respiration in the beginning of this study and the hint where to find parts of his old scaffold tower in the forest. I am deeply in debt to Antonio who helped to erect the tower in a very adventurous way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kunert.

Ethics declarations

Conflict of interest

I declare that I have no conflict of interest.

Additional information

Communicated by H. Pfanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunert, N. A case study on the vertical and diurnal variation of stem CO2 effluxes in an Amazonian forest tree. Trees 32, 913–917 (2018). https://doi.org/10.1007/s00468-018-1680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-018-1680-5

Keywords

Navigation