Skip to main content
Log in

Norway spruce needle size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Needle cross-section parameters differ according to needle orientation on a shoot corresponding to irradiance microgradient. Irradiance is a stronger morphogenic factor determining needle size and shape than CO2 concentration.

Abstract

We investigated the effects of irradiance on macroscale and microscale, elevated CO2 concentration [CO2], and their interaction on Norway spruce (Picea abies L. Karst.) needles. The irradiance macroscale was represented by sun and shade shoots from two vertical positions in a crown and the irradiance microscale corresponded to spatial orientation of individual needles on a shoot (upper, side, and lower needles relative to the shoot axis). Determination of needle cross section shape using generalized Procrustes analysis and principal component analysis provided a novel approach for evaluating needle morphometry. As expected, shade needles on the irradiance macrogradient were flatter and had less cross-sectional area and smaller volume than did sun needles. The irradiance microgradient was detected within both sun and shade shoots, being steeper in sun shoots than shade shoots. On the microscale, the irradiance gradient induced changes in needle size and cross section shape according to needles’ orientation on a shoot. Due to a more favourable light environment the traits of the upper needles within both sun and shade shoots resembled more the sun needle traits. The sun needle volume was significantly larger in the case of elevated [CO2] as compared to ambient [CO2]. Irradiance was a stronger morphogenic factor determining needle size and cross section shape compared to CO2 concentration. We demonstrated that generalized Procrustes analysis can be a very powerful tool in ecophysiological studies for evaluating small-scale, subtle leaf shape changes on an intraspecific level caused by environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apple M, Tiekotter K, Snow M et al (2002) Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiol 22:129–136

    Article  PubMed  Google Scholar 

  • Bauerle WL, Bowden JD, Wang GG (2007) The influence of temperature on within-canopy acclimation and variation in leaf photosynthesis: spatial acclimation to microclimate gradients among climatically divergent Acer rubrum L. genotypes. J Exp Bot 58:3285–3298. doi:10.1093/jxb/erm177

    Article  CAS  PubMed  Google Scholar 

  • Carter GA, Smith WK (1985) Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiol 79:1038–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cescatti A, Zorer R (2003) structural acclimation and radiation regime of Silver fir (Abies alba Mill.) Shoots along a light gradient. Plant Cell Environ 26:429–442

    Article  Google Scholar 

  • Dryden IL (2014) shapes Package. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape Analysis. John Wiley & Sons, Chichester

    Google Scholar 

  • Eguchi N, Fukatsu E, Funada R et al (2004) Changes in morphology, anatomy, and photosynthetic capacity of needles of Japanese larch (Larix kaempferi) seedlings grown in high CO2 concentrations. Photosynthetica 42:173–178

    Article  CAS  Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178. doi:10.1007/BF00317729

    Article  CAS  PubMed  Google Scholar 

  • Fleck S, Niinemets U, Cescatti A, Tenhunen JD (2003) Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis. Tree Physiol Victoria 23:577–590

    Article  Google Scholar 

  • Gebauer R, Volarik D, Urban J et al (2011) Effect of thinning on anatomical adaptations of Norway spruce needles. Tree Physiol 31:1103–1113. doi:10.1093/treephys/tpr081

    Article  PubMed  Google Scholar 

  • Gebauer R, Volařík D, Urban J et al (2015) Effects of prolonged drought on the anatomy of sun and shade needles in young Norway spruce trees. Ecol Evol 5:4989–4998

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030. doi:10.1046/j.1365-3040.2002.00881.x

    Article  Google Scholar 

  • Homolová L, Lukeš P, Malenovský Z et al (2013) Measurement methods and variability assessment of the Norway spruce total leaf area: Implications for remote sensing. Trees 27:111–121. doi:10.1007/s00468-012-0774-8

    Article  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5:299–314. doi:10.1080/10618600.1996.10474713

    Google Scholar 

  • Iio A, Fukasawa H, Nose Y et al (2009) Within-branch heterogeneity of the light environment and leaf temperature in a Fagus crenata crown and its significance for photosynthesis calculations. Trees 23:1053–1064. doi:10.1007/s00468-009-0347-7

    Article  Google Scholar 

  • Ishii H, Hamada Y, Utsugi H (2012) Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light. Tree Physiol 32:1227–1236. doi:10.1093/treephys/tps090

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: Shade-avoidance and differentiation of sun and shade leaves. Photoch Photobio Sci 4:770. doi:10.1039/b418440h

    Article  CAS  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: Integrating quantitative approaches. Nat Rev Genet 2010:623–635. doi:10.1038/nrg2829

    Article  Google Scholar 

  • Lhotáková Z, Urban O, Dubánková M et al (2012) The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): Photosynthetic performance, needle anatomy and phenolics accumulation. Plant Sci 188–189:60–70. doi:10.1016/j.plantsci.2012.02.013

    Article  PubMed  Google Scholar 

  • Lin J, Jach ME, Ceulemans R (2001) Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) Are affected by elevated CO2. New Phytol 150:665–674. doi:10.1046/j.1469-8137.2001.00124.x

    Article  Google Scholar 

  • Luomala E, Laitinen K, Sutinen S et al (2005) Stomatal density, anatomy and nutrient concentrations of Scots Pine needles are affected by elevated CO2 and temperature. Plant Cell Environ 28:733–749

    Article  CAS  Google Scholar 

  • Major JE, Johnsen KH, Barsi DC, Campbell M (2013) Needle parameter variation of mature black spruce displaying genetic × soil moisture interaction in growth. Trees 27:1151–1166. doi:10.1007/s00468-013-0865-1

    Article  Google Scholar 

  • Marshall JD, Monserud RA (2003) Foliage height influences specific leaf area of three conifer species. Can J Forest Res 33:164–170. doi:10.1139/x02-158

    Article  Google Scholar 

  • Navrátil M, Špunda V, Marková I, Janouš D (2007) Spectral Composition of photosynthetically active radiation penetrating into a Norway spruce canopy: The opposite dynamics of the blue/red spectral ratio during clear and overcast days. Trees 21:311–320. doi:10.1007/s00468-007-0124-4

    Article  Google Scholar 

  • Neustupa J (2013) Patterns of symmetric and asymmetric morphological variation in unicellular green microalgae of the genus Micrasterias (Desmidiales, Viridiplantae). Fottea 13:53–63

    Article  Google Scholar 

  • Niinemets Ü (2007) Photosynthesis and resource distribution through plant canopies. Plant Cell Environ 30:1052–1071. doi:10.1111/j.1365-3040.2007.01683.x

    Article  CAS  PubMed  Google Scholar 

  • Oker-Blom P, Smolander H (1988) The ratio of shoot silhouette area to total needle area in Scots pine. Forest Sci 34:894–906

    Google Scholar 

  • Palmroth S, Stenberg P, Smolander S et al (2002) Fertilization has little effect on light-interception efficiency of Picea abies shoots. Tree Physiol 22:1185–1192. doi:10.1093/treephys/22.15-16.1185

    Article  PubMed  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rasband W (1997) ImageJ. US National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/

  • Rautiainen M, Stenberg P (2005) Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sens Environ 96:98–107

    Article  Google Scholar 

  • Rautiainen M, Mõttus M, Yáñez-Rausell L et al (2012) A note on upscaling coniferous needle spectra to shoot spectral albedo. Remote Sens Environ 117:469–474. doi:10.1016/j.rse.2011.10.019

    Article  Google Scholar 

  • Reiter IM, Häberle K-H, Nunn AJ et al (2005) Competitive strategies in adult beech and spruce: space-related foliar carbon investment versus carbon gain. Oecologia 146:337–349. doi:10.1007/s00442-005-0146-9

    Article  CAS  PubMed  Google Scholar 

  • Sanchez F, Orero A, Soriano A et al (2013) ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys 40:051906

    Article  CAS  PubMed  Google Scholar 

  • Savriama Y, Klingenberg CP (2011) Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol Biol 11:1

    Article  Google Scholar 

  • Sellin A (2001) morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age. Environ Exp Bot 45:115–131

    Article  CAS  PubMed  Google Scholar 

  • Sharp G, Kandasamy N, Singh H, Folkert M (2007) GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys Med Biol 52:5771

    Article  CAS  PubMed  Google Scholar 

  • Sprugel DG, Brooks JR, Hinckley TM (1996) Effects of light on shoot geometry and needle morphology in Abies amabilis. Tree Physiol 16:91–98. doi:10.1093/treephys/16.1-2.91

    Article  PubMed  Google Scholar 

  • Špunda V, Čajánek M, Kalina J et al (1998) Mechanistic differences in utilization of absorbed excitation energy within photosynthetic apparatus of Norway spruce induced by the vertical distribution of photosynthetically active radiation through the tree crown. Plant Sci 133:155–165

    Article  Google Scholar 

  • Stahl E (1883) Ueber den Einfluss des sonnigen oder schattigen Standortes auf die Ausbildung der Laubbläter. Gustav Fischer, Jena

    Google Scholar 

  • Stenberg P (1996) Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiol 16:99–108. doi:10.1093/treephys/16.1-2.99

    Article  PubMed  Google Scholar 

  • Stenberg P, Smolander H, Sprugel D, Smolander S (1998) Shoot structure, light interception, and distribution of nitrogen in an Abies amabilis canopy. Tree Physiol 18:759–767

    Article  PubMed  Google Scholar 

  • Suzaki T, Kume A, Ino Y (2003) Evaluation of direct and diffuse radiation densities under forest canopies and validation of the light diffusion effect. J For Res-Jpn 8:283–290. doi:10.1007/s10310-003-0038-y

    Article  Google Scholar 

  • Terashima I (2005) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354. doi:10.1093/jxb/erj014

    Article  PubMed  Google Scholar 

  • Thomas JF, Harvey CN (1983) Leaf anatomy of four species grown under continuous CO2 enrichment. Bot Gaz 144:303–309

    Article  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    Article  CAS  Google Scholar 

  • Urban O, Janouš D, Pokorný R et al (2001) Glass domes with adjustable windows: a novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica 39:395–401. doi:10.1023/A:1015134427592

    Article  Google Scholar 

  • Urban O, Hrstka M, Zitová M et al (2012a) Effect of season, needle age and elevated CO2 concentration on photosynthesis and Rubisco acclimation in Picea abies. Plant Physiol Bioch 58:135–141. doi:10.1016/j.plaphy.2012.06.023

    Article  CAS  Google Scholar 

  • Urban O, Klem K, Ač A et al (2012b) Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO 2 uptake within a spruce canopy. Funct Ecol 26:46–55. doi:10.1111/j.1365-2435.2011.01934.x

    Article  Google Scholar 

  • Viscosi V, Cardini A (2011) Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS One 6:e25630. doi:10.1371/journal.pone.0025630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wylie R (1949) Differences in foliar organization among leaves from four locations in the crown of an isolated tree (Acer platanoides). Proc Iowa Acad Sci 189–198

Download references

Acknowledgements

This work was supported by the Czech Science Foundation [P501/10/0340], the Czech Academy of Sciences [RVO: 67985823], Charles University [SVV 260315], and the Ministry of Education, Youth and Sports of the Czech Republic [NPUI LO1417 and LO1415]. We also acknowledge the BioImaging Facility, Institute of Physiology, supported by the Czech-BioImaging large RI project funded by the Czech Ministry of Education, Youth and Sports [LM2015062], for support in obtaining scientific data presented in this paper. Our thanks also go to our colleagues from the research consortium of project P501/10/0340. We would like to thank, too, Miroslav Barták for technical help with shoot silhouette area measurement. We deeply appreciate the insightful comments of the reviewers, which led to the improvement of our article. The manuscript was edited by Gale A. Kirking, English Editorial Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Albrechtová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by G. Piovesan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

468_2017_1626_MOESM1_ESM.pdf

Electronic Supplementary Material (Online Resource 1, Fig. 7) describes pairwise scatter plots of middle cross section centroid size, Procrustes distance, and scores of PC vectors. Electronic Supplementary Material (Online Resource 1, Fig. 8) describes pairwise scatter plots of middle cross section centroid size, Procrustes distance, area and score of PC 1 vector, and needle volume. (PDF 668 KB)

468_2017_1626_MOESM2_ESM.mpg

The first supplementary video (Online Resource 2) shows sun and shade Norway spruce shoots from different angles. Sun shoot is on the left and shade shoot on the right, as viewed from the shoot tip to the upper side of the shoot. (MPG 3654 KB)

468_2017_1626_MOESM3_ESM.mpg

The second supplementary video (Online Resource 3) shows sun and shade Norway spruce shoots from different angles. Sun shoot is on the top and shade shoot on the bottom, as viewed from the shoot tip to the side of the shoot. (MPG 3093 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubínová, Z., Janáček, J., Lhotáková, Z. et al. Norway spruce needle size and cross section shape variability induced by irradiance on a macro- and microscale and CO2 concentration. Trees 32, 231–244 (2018). https://doi.org/10.1007/s00468-017-1626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1626-3

Keywords

Navigation