Skip to main content

Advertisement

Log in

Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

We designed a pair of primers from a region of the β-tubulin gene to detect and quantify Neonectria ditissima in wood of some infected apple cultivars, and optimized light microscopy to study fungal-plant interactions.

Abstract

Neone ctria ditissima, the causal pathogen of fruit tree canker, is a sordariomycete fungus that affects apple orchards, especially in north-western Europe. To prevent serious disease epidemics, an accurate, rapid, and sensitive method for detection of N. ditissima is needed for pathogen identification. A quantitative real-time PCR (qPCR) assay was developed for both detection and quantification of this pathogen in infected apple cultivars. Several primer sets were designed from regions of the β-tubulin gene. One primer set passed several validation tests, and the melting curve confirmed species-specific amplification of the correct product. In addition, the N. ditissima biomass could be detected at variable amounts in samples from the infection sites of six different cultivars, with ‘Aroma’ having the lowest amount of N. ditissima biomass and ‘Elise’ the highest. To complement the qPCR results, tissue from detached shoots and 1-year-old trees of ‘Cox’s Orange Pippin’ (susceptible) and ‘Santana’ (partially resistant) was used in a histopathology study. In both detached shoots and trees, fungal hyphae were found in cells of all tissues. No qualitative differences in the anatomy of the infected samples were observed between the cultivars. In the detached shoot experiment, both cultivars were affected but differences in the rate of disease progression suggest that the partially resistant cultivar could resist the fungus longer. The qPCR assay developed in our study produced reproducible results and can be used for detection of N. ditissima in infected trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amponsah NT, Walter M, Scheper RWA (2014) Agar media for isolation of Neonectria ditissima from symptomatic and asymptomatic apple tissues and production of infective conidia. N Z Plant Prot 67:116–122

    Google Scholar 

  • Botton A, Lezzer P, Dorigoni A, Barcaccia G, Ruperti B, Ramina A (2008) Genetic and environmental factors affecting allergen-related gene expression in apple fruit (Malus domestica L. Borkh). J Agr Food Chem 56:6707–6716

    Article  CAS  Google Scholar 

  • Braun P (1997) Distribution and severity of anthracnose canker and European canker of apple in Kings County, Nova Scotia. Can J Plant Pathol 19:78–82

    Article  Google Scholar 

  • Brown AE, Muthumeenakshi S, Sreenivasaprasad S, Mills PR, Swinburne TR (1993) A PCR primer-specific to Cylindrocarpon heteronema for detection of the pathogen in apple wood. FEMS Microbiol Lett 108:117–120

    Article  CAS  PubMed  Google Scholar 

  • Castlebury LA, Rossman AY, Hyten AS (2006) Phylogenetic relationships of Neonectria/Cylindrocarpon on fagus in North America. Can J Bot 84:1417–1433

    Article  CAS  Google Scholar 

  • Catal M, Erler F, Fulbright DW, Adams GC (2013) Real-time quantitative PCR assays for evaluation of soybean varieties for resistance to the stem and root rot pathogen Phytophthora sojae. Eur J Plant Path 137:859–869

    Article  CAS  Google Scholar 

  • Chizzali C, Gaid MM, Belkheir AK, Haensch R, Richter K, Flachowsky H, Peil A, Hanke M-V, Liu B, Beerhues L (2012) Differential expression of biphenyl synthase gene family members in fire-blight-infected apple ‘Holsteiner Cox’. Plant Physiol 158:864–875

    Article  CAS  PubMed  Google Scholar 

  • Chizzali C, Gaid MM, Belkheir AK, Beuerle T, Haensch R, Richter K, Flachowsky H, Peil A, Hanke M-V, Liu B, Beerhues L (2013) Phytoalexin formation in fire blight-infected apple. Trees-Struct Funct 27:477–484

    Article  CAS  Google Scholar 

  • CPCI (2014) Crop protection compendium on internet. CAB International, Wallingford

    Google Scholar 

  • Crous PW, Kang JC, Schoch CL, McHau GRA (1999) Phylogenetic relationships of Cylindrocladium pseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and beta-tubulin. Can J Bot 77:1813–1820

    Article  Google Scholar 

  • Crowdy SH (1949) Observations on apple canker. 3. The Anatomy of the stem canker. Ann Appl Biol 36:483–495

    Article  CAS  PubMed  Google Scholar 

  • De Jong SN, Lévesque CA, Verkley GJ, Abeln EC, Rahe JE, Braun PG (2001) Phylogenetic relationships among Neofabraea species causing tree cankers and bull’s-eye rot of apple based on DNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the β-tubulin gene. Mycol Res 105:658–669

    Article  Google Scholar 

  • Gadkar VJ, Filion M (2014) New developments in quantitative real-time polymerase chain reaction technology. Curr Issues Mol Biol 16:1–5

    PubMed  Google Scholar 

  • Garces FF, Gutierrez A, Hoy JW (2014) Detection and quantification of Xanthomonas albilineans by qPCR and potential characterization of sugarcane resistance to leaf scald. Plant Dis 98:121–126

    Article  CAS  Google Scholar 

  • Gariepy TD, Levesque CA, de Jong SN, Rahe JE (2003) Species specific identification of the Neofabraea pathogen complex associated wtih pome fruits using PCR and multiplex DNA amplification. Mycol Res 107(5):528–536

    Article  CAS  PubMed  Google Scholar 

  • Garkava-Gustavsson L, Zborowska A, Sehic J, Rur M, Nybom H, Englund JE, Lateur M, Van de Weg E, Holefors A (2013) Screening of apple cultivars for resistance to european canker, Neonectria ditissima. Acta Horticulturae 976:529–536

    Article  Google Scholar 

  • Ghasemkhani M, Liljeroth E, Sehic J, Zborowska A, Nybom H (2015) Cut-off shoots method for estimation of partial resistance in apple cultivars to fruit tree canker caused by Neonectria ditissima. Acta Agr Scand BSP 5:412–421

    Google Scholar 

  • Gold SE, Casale WL, Keen NT (1991) Characterization of two β-tubulin genes from Geotrichum candidum. Mol Gen Genet 230:104–112

    Article  CAS  PubMed  Google Scholar 

  • Gusberti M, Patocchi A, Gessler C, Broggini GAL (2012) Quantification of Venturia inaequalis growth in Malus × domestica with quantitative real-time polymerase chain reaction. Plant Dis 96:1791–1797

    Article  CAS  Google Scholar 

  • Gustavsson L (2012) Skattning av brukbar diversitet hos äpplesorter anpassade för svenskt klimat: resistens mot fruktträdskräfta (Neonectria ditissima). Jordbruksverket, Jönköping

    Google Scholar 

  • Haegi A, Catalano V, Luongo L, Vitale S, Scotton M, Ficcadenti N, Belisario A (2013) A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Phytopathology 103:802–810

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Heath R, Guest DI (2011) Rapid and intense accumulation of terpenoid phytoalexins in infected xylem tissues of cotton (Gossypium hirsutum) resistant to Fusarium oxysporum f. sp. vasinfectum. Physiol Mol Plant 76:182–188

    Article  CAS  Google Scholar 

  • Hrazdina G, Borejsza-Wysocki W, Lester C (1997) Phytoalexin production in an apple cultivar resistant to Venturia inaequalis. Phytopathology 87:868–876

    Article  CAS  PubMed  Google Scholar 

  • Ihrmark K, Bödeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • Kasson MT, Livingston WH (2009) Spatial distribution of Neonectria species associated with beech bark disease in northern Maine. Mycologia 101(2):190–195

    Article  PubMed  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125

    Article  CAS  Google Scholar 

  • Landvik S, Eriksson OE, Berbee ML (2001) Neolecta: a fungal dinosaur? Evidence from β-tubulin amino acid sequences. Mycologia: 1151–1163

  • Langrell SRH (2002) Molecular detection of Neonectria galligena (syn. Nectria galligena). Mycol Res 106:280–292

    Article  CAS  Google Scholar 

  • Langrell SRH, Barbara DJ (2001) Magnetic capture hybridisation for improved PCR detection of Nectria galligena from lignified apple extracts. Plant Mol Biol Rep 19:5–11

    Article  CAS  Google Scholar 

  • McCracken AR, Berrie A, Barbara DJ, Locke T, Cooke LR, Phelps K, Swinburne TR, Brown AE, Ellerker B, Langrell SRH (2003) Relative significance of nursery infections and orchard inoculum in the development and spread of apple canker (Nectria galligena) in young orchards. Plant Pathol 52:553–566

    Article  Google Scholar 

  • Nakayama M, Hosoya K, Tomiyama D, Tsugukuni T, Matsuzawa T, Imanishi Y, Yaguchi T (2013) Method for rapid detection and identification of Chaetomium and evaluation of resistance to peracetic acid. J Food Prot 76:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Olien W, Lakso A (1986) Effect of rootstock on apple (Malus domestica) tree water relations. Physiol Plant 67(3):421–430

    Article  Google Scholar 

  • Pagliarani G, Paris R, Arens P, Tartarini S, Ricci G, Smulders MJ, Van de Weg WE (2013) A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes. BMC Plant Biol 13:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panaccione DG, Hanau RM (1990) Characterization of two divergent β-tubulin genes from Colletotrichum graminicola. Gene 86:163–170

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sakamoto Y, Yamada Y, Sano Y, Tamai Y, Funada R (2004) Pathological anatomy of Nectria canker on Fraxinus mandshurica var. japonica. Iawa J 25:165–174

    Article  Google Scholar 

  • Scheper R, Fisher B, Amponsah N, Walter M (2014) Effect of culture medium, light and air circulation on sporulation of Neonectria ditissima. N Z Plant Prot 67:123–132

    Google Scholar 

  • Scheper R, Frijters L, Fisher B, Hedderley D (2015) Effect of freezing of Neonectria ditissima inoculum on its pathogenicity. N Z Plant Prot 68:257–263

    CAS  Google Scholar 

  • Sutton TB, Aldwinckle HS, Agnello AM, Walgenbach JF (2014) Compendium of apple and pear diseases and pests. American Phytopathological Society, St Paul

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter M, Stevenson O, Amponsah N, Scheper R, McLachlan A (2014) Sensitivity of Neonectria ditissima to carbendazim fungicide in New Zealand. N Z Plant Prot 67:133–138

    CAS  Google Scholar 

  • Webster A, Cross J, Berrie A, Johnson D, Biddlecombe C, Pennell D, Luton M, Guest J (2001) The best practice guide for UK apple production. Department for Environment, Food & Rural Affairs, London

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications, San Diego California, p 315–322

  • Xu XM, Robinson JD (2010) Effects of fruit maturity and wetness on the infection of apple fruit by Neonectria galligena. Plant Pathol 59:542–547

    Article  Google Scholar 

  • Yip SP, To SST, Leung PHM, Cheung TS, Cheng PKC, Lim WWL (2005) Use of dual TaqMan probes to increase the sensitivity of 1-step quantitative reverse transcription-PCR: application to the detection of SARS coronavirus. Clin Chem 51(10):1885–1888

    Article  CAS  PubMed  Google Scholar 

  • Yun Y, Suh D, Son S, Kim S (2013) Development of PCR method for fast detection of Ophiostoma floccosum in wood chips. Afr J Microbiol Res 7:1913–1916

    CAS  Google Scholar 

  • Zalasky H (1968) Penetration and initial establishment of Nectria galligena in aspen and peachleaf willow. Can J Bot 46:57–60

    Article  Google Scholar 

  • Zhao Z, Liu H, Luo Y, Zhou S, An L, Wang C, Jin Q, Zhou M, Xu JR (2014) Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep 4

Download references

Acknowledgments

Financial assistance was received from Swedish Farmer’s organization and Partnership Alnarp to Larisa Garkava-Gustavsson, from the Nordic Ministries of Food and Agriculture through the Nordic collaboration on Public–Private Partnership for pre-breeding, administered by NordGen, to Hilde Nybom and the New Zealand Institute for Plant & Food Research Ltd. The authors gratefully acknowledge the help of Kerstin Brismar with microscopy samples, Prof. Erland Liljeroth for suggestions with regard to the isolation of Neonectria ditissima and useful discussions, Marlene Jaspers and Margaret Dick for providing LUPP and NZFS isolates and Helle Turesson for help with qPCR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Ghasemkhani.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by W. Osswald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 135 kb)

Supplementary material 2 (XLS 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemkhani, M., Holefors, A., Marttila, S. et al. Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees. Trees 30, 1111–1125 (2016). https://doi.org/10.1007/s00468-015-1350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1350-9

Keywords

Navigation