Skip to main content
Log in

Effects of gap-model thinning intensity on the radial growth of gap-edge trees with distinct crown classes in a spruce plantation

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Radial growth responses of gap-edge trees to GT intensity greatly depends on microclimate condition (soil temperature and PAR) within gaps and their abilities in competing and utilizing the limited resources.

Abstract

Gap-model thinning (GT) is an effective management technique to improve the productivity of dense monoculture plantation. However, how GT intensity influence inter- and intra-annual radial growth of the gap-edge trees remains an open question. In order to explore this question, we implemented an experiment with four treatments (control and gap sizes of 74, 109, and 196 m2) in a 30-year-old spruce (Picea asperata) plantation in 2008. We used dendrochronological method to explore dynamic of the basal area increment (BAI) of gap-edge trees (n = 127) from 2009 to 2012 after GT treatments. We found that effects of GT on the BAI of gap-edge trees highly depended on GT intensity and their crown classes. The large gaps significantly increased the BAI of gap-edge trees and further the latewood growth responded more sensitively than the earlywood, whereas the influences of the small and intermediate gaps were weak; the large gaps effectively improved the BAI of the dominant trees, following by the intermediate, but not for the suppressed trees. Our results also displayed that the earlywood increment was strongly related to the soil temperature in spring and the latewood formation was influenced by the photosynthetically active radiation in autumn. It was eventually concluded that dynamic radial growth of gap-edge trees were driven by the improved microclimate caused by GT and their abilities in competing and utilizing resources. The present study highlights the importance of setting appropriate GT intensity and choosing the felled trees in GT operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arevalo JR, Fernandez-Palacios JM (2005) From pine plantations to natural stands. Ecological restoration of a Pinus canariensis Sweet, ex Spreng forest. Plant Ecol 181(2):217–226. doi:10.1007/s11258-005-6919-8

    Article  Google Scholar 

  • Arseneault JE, Saunders MR (2012) Incorporating canopy gap-induced growth responses into spatially implicit growth model projections. Ecol Model 237:120–131. doi:10.1016/j.ecolmodel.2012.04.003

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301. doi:10.1051/forest:2000119

    Article  Google Scholar 

  • Barbour RJ, Fayle DCF, Chauret G, Cook J, Karsh MB, Ran SK (1994) Breast-height relative density and radial growth in mature Jack pine (Pinus banksiana) for 38 years after thinning. Can J For Res 24(12):2439–2447. doi:10.1139/x94-315

    Article  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147(1):46–54. doi:10.1111/j.1399-3054.2012.01663.x

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua E, Puttock D, Blake T, Burgess D (2005) Long-term differential stem growth responses in mature eastern white pine following release from competition. Can J For Res 35(3):511–520. doi:10.1139/x04-198

    Article  Google Scholar 

  • Biondi F (1999) Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol Appl 9(1):216–227. doi:10.1890/1051-0761(1999)009[0216:CTRCAR]2.0.CO;2

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15(5):295–306. doi:10.1093/treephys/15.5.295

    Article  PubMed  Google Scholar 

  • Brown PL, Doley D, Keenan RJ (2004) Stem and crown dimensions as predictors of thinning responses in a crowded tropical rainforest plantation of Flindersia brayleyana R Muell. For Ecol Manag 196(2–3):379–392. doi:10.1016/j.foreco.2004.03.029

    Article  Google Scholar 

  • Canham CD, Denslow JS, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20(5):620–631. doi:10.1139/x90-084

    Article  Google Scholar 

  • Chen M, Zhu JJ, Yan QL, Wu XY, Tan H (2009) Comparison of light characteristics in different size gaps in eastern Liaoning montane secondary forests. Chin J Appl Ecol 19(12):2555–2560 (in Chinese)

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28(6):863–871. doi:10.1093/treephys/28.6.863

    Article  PubMed  Google Scholar 

  • D’Orangeville L, Cote B, Houle D, Morin H, Duchesne L (2013) A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir. Trees 27(6):1525–1536. doi:10.1007/s00468-013-0899-4

    Article  Google Scholar 

  • Gricar J, Zupancic M, Cufar K, Oven P (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41(6):463–475. doi:10.1007/s00226-006-0109-2

    Article  CAS  Google Scholar 

  • Jiang YM, Pang XY, Bao WK (2011) Soil microbial biomass and the influencing factors under Pinus tabulaeformis and Picea asperata plantations in the upper Minjiang River. Acta Ecol Sinica 31(03):801–811 (in Chinese)

    CAS  Google Scholar 

  • Jones TA, Thomas SC (2004) The time course of diameter increment responses to selection harvests in Acer saccharum. Can J For Res 34(7):1525–1533. doi:10.1139/x04-034

    Article  Google Scholar 

  • Jones TA, Thomas SC (2007) Leaf-level acclimation to gap creation in mature Acer saccharum trees. Tree Physiol 27(2):281–290. doi:10.1093/treephys/27.2.281

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Domke GM, Thomas SC (2009) Canopy tree growth responses following selection harvest in seven species varying in shade tolerance. Can J For Res 39(2):430–440. doi:10.1139/x08-186

    Article  Google Scholar 

  • Jyske T, Holtta T, Makinen H, Nojd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30(1):103–115. doi:10.1093/treephys/tpp099

    Article  PubMed  Google Scholar 

  • Klingsporn S, Webster CR, Bump JK (2012) Influence of legacy-tree retention on group-selection opening persistence. For Ecol Manag 286:121–128. doi:10.1016/j.foreco.2012.08.034

    Article  Google Scholar 

  • Koga S, Zhang SY, Begin J (2002) Effects of precommercial thinning on annual radial growth and wood density in balsam fir (Abies balsamea). Wood Fiber Sci 34(4):625–642

    CAS  Google Scholar 

  • Latham P, Tappeiner J (2002) Response of old-growth conifers to reduction in stand density in western Oregon forests. Tree Physiol 22(2–3):137–146. doi:10.1093/treephys/22.2-3.137

    Article  CAS  PubMed  Google Scholar 

  • Lebourgeois F (2000) Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann For Sci 57(2):155–164. doi:10.1051/forest:2000166

    Article  Google Scholar 

  • Linares JC, Camarero JJ, Carreira JA (2009) Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol 29(12):1525–1536. doi:10.1093/treephys/tpp084

    Article  PubMed  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2012) Xylogenesis in black spruce: does soil temperature matter? Tree Physiol 32(1):74–82. doi:10.1093/treephys/tpr132

    Article  PubMed  Google Scholar 

  • Makinen H, Hynynen J (2012) Predicting wood and tracheid properties of Scots pine. For Ecol Manag 279:11–20. doi:10.1016/j.foreco.2012.05.024

    Article  Google Scholar 

  • Mäkinen H, Isomäki A (2004) Thinning intensity and long-term changes in increment and stem form of Norway spruce trees. For Ecol Manag 201(2–3):295–309. doi:10.1016/j.foreco.2004.07.017

    Article  Google Scholar 

  • Martín-Benito D, Cherubini P, del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22(3):363–373. doi:10.1007/s00468-007-0191-6

    Article  Google Scholar 

  • Martín-Benito D, Del Río M, Heinrich I, Helle G, Canellas I (2010) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259(5):967–975. doi:10.1016/j.foreco.2009.12.001

    Article  Google Scholar 

  • McDowell N, Brooks J, Fitzgerald S, Bond B (2003) Carbon isotope discrimination and growth response of old Pinus ponderosa trees to stand density reductions. Plant Cell Environ 26(4):631–644. doi:10.1046/j.1365-3040.2003.00999.x

    Article  Google Scholar 

  • McDowell NG, Adams HD, Bailey JD, Hess M, Kolb TE (2006) Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Appl 16(3):1164–1182. doi:10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2

  • Neuendorff JK, Nagel LM, Webster CR, Janowiak MK (2007) Stand structure and composition in a northern hardwood forest after 40 years of single-tree selection. North J Appl For 24(3):197–202

    Google Scholar 

  • Pang XY, Bao WK, Zhu B, Cheng WX (2013) Responses of soil respiration and its temperature sensitivity to thinning in a pine plantation. Agric For Meteorol 171–172:57–64. doi:10.1016/j.agrformet.2012.12.001

    Article  Google Scholar 

  • Pedersen BS, Howard JL (2004) The influence of canopy gaps on overstory tree and forest growth rates in a mature mixed-age, mixed-species forest. For Ecol Manag 196(2–3):351–366. doi:10.1016/j.foreco.2004.03.031

    Article  Google Scholar 

  • Perez-de-Lis G, Garcia-Gonzalez I, Rozas V, Arevalo JR (2011) Effects of thinning intensity on radial growth patterns and temperature sensitivity in Pinus canariensis afforestations on Tenerife Island, Spain. Ann For Sci 68(6):1093–1104. doi:10.1007/s13595-011-0125-8

    Article  Google Scholar 

  • Phillips DL, Shure DJ (1990) Patch-size effects on early succession in southern Appalachian forests. Ecology. doi:10.2307/1940260

    Google Scholar 

  • Prevost M, Raymond P (2012) Effect of gap size, aspect and slope on available light and soil temperature after patch-selection cutting in yellow birch-conifer stands, Quebec, Canada. For Ecol Manag 274:210–221. doi:10.1016/j.foreco.2012.02.020

    Article  Google Scholar 

  • Ritter E (2005) Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biol Biochem 37(7):1237–1247. doi:10.1016/j.soilbio.2004.11.020

    Article  CAS  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12. doi:10.1007/s00442-006-0625-7

    Article  PubMed  Google Scholar 

  • Rossi S, Morin H, Deslauriers A, Plourde P-Y (2011) Predicting xylem phenology in black spruce under climate warming. Glob Change Biol 17(1):614–625. doi:10.1111/j.1365-2486.2010.02191.x

    Article  Google Scholar 

  • Stan AB, Daniels LD (2010) Growth releases of three shade-tolerant species following canopy gap formation in old-growth forests. J Veg Sci 21(1):74–87. doi:10.1111/j.1654-1103.2009.01120.x

    Article  Google Scholar 

  • Tan H, Zhu JQ, Kang HZ, Zhang L (2007) A research review on forest gap disturbance. Chin J Ecol 26(4):587–594. doi:10.13292/j.1000-4890.2007.0107

    Google Scholar 

  • Thiel AL, Perakis SS (2009) Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon. For Ecol Manag 258(3):273–287. doi:10.1016/j.foreco.2009.04.015

    Article  Google Scholar 

  • Wardman CW, Schmidt MG (1998) Growth and form of Douglas-fir adjacent to persistent vine maple gaps in southwestern British Columbia. For Ecol Manag 106(2):223–233. doi:10.1016/S0378-1127(97)00315-0

    Article  Google Scholar 

  • Wyckoff PH, Clark JS (2005) Tree growth prediction using size and exposed crown area. Can J For Res 35(1):13–20. doi:10.1139/x04-142

    Article  Google Scholar 

Download references

Acknowledgments

The investigation was supported by the National Science and Technology Pillar program in 12th 5-year Plan of China (No. 2011BAC09B0402) and the Strategic Priority Research Program of the CAS (No. XDA05070306). We gratefully acknowledge Dr. Fanglan Li, Zhe Wang and Bin Yang for providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikai Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Kajimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Pang, X., Bao, W. et al. Effects of gap-model thinning intensity on the radial growth of gap-edge trees with distinct crown classes in a spruce plantation. Trees 29, 1861–1870 (2015). https://doi.org/10.1007/s00468-015-1267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1267-3

Keywords

Navigation