Skip to main content
Log in

Corolla structure and fragrance components in Styrax tonkinensis

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The structure of petals and volatile compounds from fresh Styrax tonkinensis cut flowers were investigated by using micro-techniques and a headspace solid-phase micro-extraction technique coupled with GC–MS.

Abstract

Styrax tonkinensis is a fast-growing woody plant that is used for timber and as a medicinal plant. In the present study, the structures of the flower petals of S. tonkinensis were investigated and volatile compounds emitted from the petals were identified. Light microscopy, scanning and transmission electron microscopy were used to describe petal structure. The volatile constituents were analyzed using a headspace GC–MS technique. Results indicated that glandular hairs and 8–9 layers of parenchyma cells in the cream-white petals play a key role in emitting the fragrance. An analysis of the volatile components emitted by the cut flowers of S. tonkinensis at two stages of flower development (prior to and at anthesis) indicated that monoterpenes, such as 1,3,6-octatriene, 3,7-dimethyl-(Z), and α-pinene, were the most abundant volatile components in all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? Evolution 54:1995–2006

    Article  CAS  PubMed  Google Scholar 

  • Bergström G, Dobson HEM, Groth I (1995) Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol 195:221–242

    Article  Google Scholar 

  • Booth TH, Nghia NH, Kirschbaum MUF, Hackett C, Jovanovic T (1999) Assessing possible impacts of climate change on species important for forestry in Vietnam. Clim Change 41(1):109–126

    Article  Google Scholar 

  • Brahmkshatriya PP, Brahmkshatriya PS (2013) Terpenes: chemistry, biological role, and therapeutic applications. In: Ramawat KG, Mèrillon J-M (eds) Natural products. Springer, Berlin, Heidelberg, pp 2665–2691

  • Chen FD, Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by biochemical genomic approach, has a role in defense. Plant J 36:577–588

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Sawamura M (2002) Effects of storage conditions on the composition of Citrus tamurana Hort. Ex Tanaka (Hyuganatsu) essential oil. Biosci Biotechnol Biochem 66:439–443

    Article  CAS  PubMed  Google Scholar 

  • Corley J (2007) Fragrances for natural and certified organic personal care products. Perfum Flavorist 32:24–28

    Google Scholar 

  • Custódio L, Serra H, Nogueira JMF, Gonçalves S, Romano A (2006) Analysis of the volatiles emitted by whole flowers and isolated flower organs of the carob tree using HS–SPME–GC/MS. J Chem Ecol 32:929–942

    Article  PubMed  Google Scholar 

  • Deng CH, Song GX, Hu YM (2004) Rapid determination of volatile compounds emitted from Chimonanthus praecox flowers by HS–SPME–GC–MS. Z Naturforsch [C] 59(9–10):636–640

    CAS  Google Scholar 

  • Dobson HEM (1994) Floral volatiles in insect biology. In: Bernays E (ed) Insect–plant interaction, vol 5. CRC Press, Boca, Raton, pp 47–81

    Google Scholar 

  • Dobson HEM, Bergstro MG, Groth I (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb. (Rosaceae). Isr J Bot 39:143–156

    CAS  Google Scholar 

  • Dobson HEM, Danielson EM, Van Wesep ID (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol 14:153–166

    Article  Google Scholar 

  • Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides. Plant Syst Evol 255(1–2):99–109

    Article  Google Scholar 

  • Dötterl S, Fűssel U, Jűrgens A, Aas G (2005) 1,4-dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol 12(31):2993–2998

    Article  Google Scholar 

  • Du ZX, Mo SL, Gong SJ et al (2008) Chemical constituents of volatile oil from Porella paraphyllia. Guihaia 28(3):422–423 (in Chinese)

    CAS  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fäldt J, Arimura G, Gershenzon J, Takabayashi J, Bohlmann J (2003) Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216(5):745–751

    PubMed  Google Scholar 

  • Glover BJ, Martin C (2002) Evolution of adaptive petal cell morphology. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Develop-mental genetics and plant evolution. Taylor and Francis, London, pp 160–172

    Google Scholar 

  • Goodwin SM, Kolosova N, Kish CM, Wood KV, Dudareva N, Jenks MA (2003) Cuticle characteristics and volatile emissions of petals in Antirrhinum majus. Physiol Plant 117:435–443

    Article  CAS  PubMed  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M et al (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakobsen HB, Olsen CE (1994) Influence of climatic factors on emission of flower volatiles in situ. Planta 192:365–371

    CAS  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Florida, pp 27–52

    Google Scholar 

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic appratus against ozone damage, quenches ozone products, and reduces lipid peroxindation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loreto F, Nascetti P, Graverini A, Mannozzi M (2000) Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, Pinus pinea. Funct Ecol 14:589–595

    Article  Google Scholar 

  • Maria RP, Mark JP, Wendy SG et al (2009) The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada. Atmos Environ 43:4109–4123

    Article  Google Scholar 

  • Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Matsubara K, Watanabe H et al (2006) Identification of Petunia hybrida cultivars that diurnally emit floral fragrances. Sci Hortic 108:61–65

    Article  CAS  Google Scholar 

  • Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J (2007) Terpenes: substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis 55(5):315–327

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Xia HL, Zhou Y, Wang J, Wu Q, Guo S, Jia F (2013) Comparative analysis of volatile oil components in Liquidambar orientalis and Styrax tonkinensis. China Pharm 3(24):241–243 (in Chinese)

    Google Scholar 

  • Phuong LX, Shida S, Saito Y (2007) Effects of heat treatment on brittleness of Styrax tonkinensis wood. J Wood Sci 53(3):181–186

    Article  CAS  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae) I. localization and developmental modulation of monoterpenes emission and linalool synthase activity. Plant Physiol 126:1533–1540

    Google Scholar 

  • Pinyopusarerk K (1994) Stryrax tonkinensis: taxonomy, ecology, silviculture and uses. ACIAR Tech Rep 31:20

    Google Scholar 

  • Pott MB, Pichersky E, Piechulla B (2002) Evening-specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. J Plant Physiol 159:925–934

    Article  CAS  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Reverchon E, Marco ID (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    Article  CAS  Google Scholar 

  • Schade F, Legge RL, Thompson JE (2001) Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56(7):703–710

    Article  CAS  PubMed  Google Scholar 

  • Schilling B, Kaiser R, Natsch A, Gautschi M (2010) Investigation of odors in the fragrance industry. Chemoecology 20:135–147

    Article  CAS  Google Scholar 

  • Schultz TH, Flath RA, Mon TR, Eggling SB, Teranishi R (1997) Isolation of volatile components from a model system. J Agric Food Chem 25:446–449

    Article  Google Scholar 

  • Sun M, Li P, Li JH, Zhang QX (2007) Function and landscape application of aromatic plants. Pract For Technol 5:46–47 (in Chinese)

    Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant–mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hua HM, Pei YH et al (2006a) Triterpenoids from the resin of Styrax tonkinensis and their anti proliferative and differentiation effects in human leukemia HL-60 cells. J Nat Prod 69:807–810 (in Chinese)

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hua HM, Bian X et al (2006b) Two new aromatic compounds from the resin of Styrax tonkinensis (Pier.) Craib. J Asian Nat Prod Res 8(1–2):137–141 (in Chinese)

    Article  PubMed  Google Scholar 

  • Wen FJ, Yu QS (2005) Research progress of natural aroma compounds in plants. Mod Chem Ind 25(4):25–28 (in Chinese)

    CAS  Google Scholar 

  • Yoshiki Y, Nobuo I (1991) Spices (Japan) 9(171):143–151

    Google Scholar 

Download references

Author contribution statement

Liping Xu is responsible for designing, finishing the experiment, data acquisition and analysis, manuscript preparation, and so on. Fangyuan Yu provided helpful suggestions in data analysis and final approval of the version to be published.

Acknowledgments

The authors acknowledge the funding received from the Priority Academic Program Development of Jiangsu Higher Education Institutions. We would especially like to thank Mrs. Xihua Gan from Nanjing Forestry University and Sheng Yu from Nanjing University of Chinese Medicine for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyuan Yu.

Additional information

Communicated by K. Masake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Yu, F. Corolla structure and fragrance components in Styrax tonkinensis . Trees 29, 1127–1134 (2015). https://doi.org/10.1007/s00468-015-1193-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1193-4

Keywords

Navigation