Skip to main content
Log in

Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: a pointer year and recovery time case study in Central Germany

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The most promising and representative earlywood vessel parameters were identified for dendroecological applications in oak.

Abstract

Recent improvements of methods used in tree-ring and quantitative wood anatomical studies have helped to widen the selection of parameters which contain environmental information. In the present study, we identified the most promising parameters with respect to signal strength, representativeness, and applicability in oak (Quercus robur L.) from two sites in Germany with different moisture regimes. We analyzed three tree-ring and 15 vessel parameters. Principal component analysis was used to detect clusters of relatively similar parameters. Correlation analysis and classical dendrochronological methods were used to select the most robust parameters. From the 15 initial anatomical parameters, six proved to be suitable for tree-ring anatomical studies based on our screening criteria. These were mean area of the vessels of the first row, mean of the five largest vessels, total vessel area, total area of the vessels excluding the first row, vessel density, and total vessel area as a percentage of tree-ring area. These parameters were applied to samples to search for lagged responses to positive and negative pointer years using superposed epoch analysis. Negative, i.e., dry, pointer years provoked no lagged changes in analyzed parameters at either site; whereas positive, i.e., moist, pointer years showed a lagged negative response of all parameters, which was more pronounced at the drier site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrantes J, Campelo F, García-González I, Nabais C (2013) Environmental control of vessel traits in Quercus ilex under Mediterranean climate: relating xylem anatomy to function. Trees Struct Funct 27:655–662. doi:10.1007/s00468-012-0820-6

    Article  Google Scholar 

  • Alla AQ, Camarero JJ (2012) Contrasting responses of radial growth and wood anatomy to climate in a Mediterranean ring-porous oak: implications for its future persistence or why the variance matters more than the mean. Eur J Forest Res 131:1537–1550. doi:10.1007/s10342-012-0621-x

    Article  Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees Struct Funct 27:485–496. doi:10.1007/s00468-012-0802-8

    Article  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  • Butin H (2011) Krankheiten der Wald- und Parkbäume/Diagnose—Biologie—Bekämpfung, 4, neubearb. Aufl. edn, Ulmer

    Google Scholar 

  • Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I (2010) Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width. Trees 24:463–470. doi:10.1007/s00468-010-0414-0

    Article  Google Scholar 

  • Cook ER (1985) A time series analysis approach to tree-ring standardization. University of Arizona, Arizona

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004a) Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. IAWA J 25:185–204

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004b) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92. doi:10.1007/s00468-003-0284-9

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20:91–98. doi:10.1007/s00468-005-0016-4

    Article  Google Scholar 

  • Cropper JP (1979) Tree-ring skeleton plotting by computer. Tree Ring Bull 39:47–59

    Google Scholar 

  • Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187. doi:10.1093/treephys/tps004

    Article  PubMed  Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163:77–86. doi:10.1111/j.1469-8137.2004.01089.x

    Article  Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570. doi:10.1111/j.1469-8137.2006.01945.x

    Article  PubMed  Google Scholar 

  • Fonti P, Eilmann B, García-González I, von Arx G (2009) Expeditious building of ring-porous earlywood vessel chronologies without loosing signal information. Trees 23:665–671. doi:10.1007/s00468-008-0310-z

    Article  Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53. doi:10.1111/j.1469-8137.2009.03030.x

    Article  PubMed  Google Scholar 

  • Galle A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010) Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann Forest Sci 67:809. doi:10.1051/forest/2010045

    Article  Google Scholar 

  • García-González I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  Google Scholar 

  • García-González I, Fonti P (2006) Selecting earlywood vessels to maximize their environmental signal. Tree Physiol 26:1289–1296

    Article  PubMed  Google Scholar 

  • García-González I, Fonti P (2008) Ensuring a representative sample of earlywood vessels for dendroecological studies: an example from two ring-porous species. Trees 22:237–244. doi:10.1007/s00468-007-0180-9

    Article  Google Scholar 

  • Gärtner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28:85–92. doi:10.1016/j.dendro.2009.09.002

    Article  Google Scholar 

  • Gasson P (1985) Automatic measurement of vessel lumen area and diameter with particular reference to pedunculate oak and common beech. IAWA Bull 6:219–237

    Article  Google Scholar 

  • González-González BD, Rozas V, García-González I (2014) Earlywood vessels of the sub-Mediterranean oak Quercus pyrenaica have greater plasticity and sensitivity than those of the temperate Q. petraea at the Atlantic-Mediterranean boundary. Trees Struct Funct 28:237–252. doi:10.1007/s00468-013-0945-2

    Article  Google Scholar 

  • Gricar J, de Luis M, Hafner P, Levanic T (2013) Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees Struct Funct 27:1669–1680. doi:10.1007/s00468-013-0914-9

    Article  Google Scholar 

  • Helińska-Raczkowska L (1994) Variation of vessel lumen diameter in radial direction as an indication of the juvenile wood growth in oak (Quercus petraea Liebl). Ann Forest Sci 51:283–290. doi:10.1051/forest:19940307

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Kniesel B, Günther B, Von Arx G (2014) Testing parameters on basis of earlywood vessels for signal quality and applicability. In: Trace 2014, Aviemore

  • Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic-eruptions on north-american climate using tree-ring data, 1602 to 1900 ad. Clim Change 10:219–239. doi:10.1007/bf00143903

    Article  Google Scholar 

  • Matisons R, Elferts D, Brūmelis G (2013) Pointer years in tree-ring width and earlywood-vessel area time series of Quercus robur—relation with climate factors near its northern distribution limit. Dendrochronologia 31:129–139

    Article  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24:79–89

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees Struct Funct 11:474–484. doi:10.1007/s004680050110

    Article  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170:807–818. doi:10.1111/j.1469-8137.2006.01712.x

    Article  PubMed  Google Scholar 

  • Pumijumnong N, Park WK (1999) Vessel chronologies from teak in northern Thailand and their climatic signal. IAWA J 20:285–294

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Rinn F (2011) TSAP-Win reference manual, Heidelberg

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252

    Article  Google Scholar 

  • Sass-Klaassen U, Sabajo CR, den Ouden J (2011) Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29:171–175. doi:10.1016/j.dendro.2011.01.002

    Article  Google Scholar 

  • Tardif JC, Conciatori F (2006) Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can J Forest Res 36:2317–2330. doi:10.1139/x06-133

    Article  Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834. doi:10.1175/jcli3734.1

    Article  Google Scholar 

  • von Arx G, Carrer M (2014) ROXAS—a new tool to build centuries-long tracheid-lumen chronologies in conifers. Dendrochronologia. doi:10.1016/j.dendro.2013.12.001

    Google Scholar 

  • von Arx G, Dietz H (2005) Automated image analysis of annual rings in the roots of perennial forbs. Int J Plant Sci 166:723–732

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer Drought Severity Index. J Clim 17:2335–2351. doi:10.1175/1520-0442(2004)017<2335:aspdsi>2.0.co;2

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

Download references

Author contribution statement

All authors made substantial contributions to conception and design of the study. BK and BG conducted sampling. BK performed lab work and data analysis and interpretation. All authors drafted the manuscript. AR and GvA gave final approval of the version to be submitted.

Acknowledgments

This study was part of the project GR 3736/2-1 funded by the Deutsche Forschungsgemeinschaft (German Research Foundation). We would like to thank Sten Gillner and Matthias Meyer for their help in the field and their valuable comments and suggestions to improve the quality of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britt Maria Kniesel.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kniesel, B.M., Günther, B., Roloff, A. et al. Defining ecologically relevant vessel parameters in Quercus robur L. for use in dendroecology: a pointer year and recovery time case study in Central Germany. Trees 29, 1041–1051 (2015). https://doi.org/10.1007/s00468-015-1183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1183-6

Keywords

Navigation