Skip to main content
Log in

The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Double-stained microsections from high altitude Pinus nigra wood cores highlighted unlignified latewood cells possibly linked to abrupt temperature reduction at the end of the growing season. More consolidated detection could increase their role in dendroecology.

Abstract

Cambial activity and wood formation are influenced by environmental factors, primarily climate. During cell wall formation the lignification is mainly controlled by temperature. By staining with safranin and astra blue it is possible to distinguish cell walls richer in lignin (stained in red) from those richer in cellulose (stained in blue). Here we show an uncommon phenomenon observed in 41 transverse sections prepared for anatomical studies of young European black pine (Pinus nigra Arnold) individuals. We detected some layers of incompletely lignified cells that appear blue in safranin–astra blue-stained sections. Growth rings showing this anatomical feature were named “blue rings”. The aims of this preliminary study are: (i) to describe the features of this peculiar anatomical trait, (ii) to enhance its visualization, and (iii) to suggest possible drivers of its formation. First results indicate the influence of low air temperature causing a lack of lignification in latewood cells. The added values provided by the identification of “blue rings” within tree-ring series could be (i) their possible use as pointer year, (ii) cross dating improvement, and (iii) finer assessment of tree sensitivity to environmental and climatic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aloni R (2013) The role of hormones in controlling vascular differentiation. In: Fromm J (ed) Cellular aspects of wood formation. Springer, Berlin, pp 99–139

    Chapter  Google Scholar 

  • Barnett JR (1971) Winter activity in the cambium of Pinus radiata. New Zeal J For Sci 1:208–222

    Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147:46–54

    Article  CAS  PubMed  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Chaffey N (2002) Wood formation in trees. Cell and molecular biology techniques. Taylor and Francis, London

    Book  Google Scholar 

  • Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625

    Article  PubMed  Google Scholar 

  • Cuny HE, Rathgeber CBK, Kiessé TS, Hartmann FP, Barbeito I, Fournier M (2013) Generalized additive models reveal the intrinsic complexity of wood formation dynamics. J Exp Bot. doi:10.1093/jxb/ert057

    PubMed Central  PubMed  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventos J (2007) Seasonal dynamics of wood formation: a comparison between pinning, microcoring and dendrometer measurements. IAWA Journal 28:389–404

    Article  Google Scholar 

  • De Luis M, Novak K, Raventos J, Gričar J, Prislan P, Čufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  • De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal 28:61–74

    Article  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12(2):64–70

    Article  CAS  PubMed  Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Kent, Castle House, pp 236–255

    Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–887

    Article  PubMed  Google Scholar 

  • Donaldson LA (1991) Seasonal changes in lignin distribution during tracheid development in Pinus radiata D. Don. Wood Sci Techno 25:15–24

    CAS  Google Scholar 

  • Donaldson LA (1992) Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bulletin 13(4):381–387

    Article  Google Scholar 

  • Donaldson LA (1993) Lignin distribution in wood from a progeny trial of genetically selected Pinus radiata D. Don. Wood Sci Technol 27:391–395

    Article  CAS  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry: an ultrastructural view. Phytochemistry 57:859–873

    Article  CAS  PubMed  Google Scholar 

  • Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J 23:161–178

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. John Wiley & Sons Inc, Hoboken, p 623

    Book  Google Scholar 

  • Gärtner H, Schweingruber FH (2013) Microscopic preparation techniques for plant stem analysis. Verlag Dr. Kessel, Remagen-Oberwinter, p 78

    Google Scholar 

  • Gärtner H, Lucchinetti S, Schweingruber FH (2014) New perspectives for wood anatomical analysis in Dendrosciences: the GSL1-microtome. Dendrochronologia 32:47–51

    Article  Google Scholar 

  • Gerlach D (1984) Botanische Mikrotechnik, 3rd edn. Thieme, Stuttgard

    Google Scholar 

  • Gindl W (1999) Climatic significance of light rings in timberline spruce, Picea abies, Austrian Alps. Arct Antarct Alp Res 31(3):242–246

    Article  Google Scholar 

  • Gindl W (2001) Cell-wall lignin content related to tracheid dimensions in drought-sensitive Austrian pine (Pinus nigra). IAWA J 22(2):113–120

    Article  Google Scholar 

  • Gindl W, Grabner M (2000) Characteristics of spruce [Picea abies (L.) Karst] latewood formed under abnormally low temperatures. Holzforschung 54:9–11

    Article  CAS  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees-Struct Funct 14:409–414

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2001) Effects of altitude of tracheid differentiation and lignification of Norway spruce. Can J Bot 79:815–821

    Google Scholar 

  • Glerum C, Farrar JL (1966) Frost ring formation in the stems of some coniferous species. Can J Bot 44:879–886

    Article  Google Scholar 

  • Glock WS, Reed EL (1940) Multiple growth layers in the annual increments of certain trees at Lubbock, Texas. Science (Washington, D.C.) 91:98–99

    Article  CAS  Google Scholar 

  • Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot 95:959–965

    Article  PubMed Central  PubMed  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlén M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Nat Acad Sci USA 98:14732–14737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology. Terms and definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research, Berne, Stuttgart, Viena, Haupt, p 467

  • Kuo ML, McGinnes EA (1973) Variation of anatomical structure of false rings in Eastern red cedar. Wood Sci Technol 5(3):205–210

    Google Scholar 

  • Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. C R Acad Sci Paris 322:633–650

    Article  CAS  PubMed  Google Scholar 

  • LaMarche VC, Hirschboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126

    Article  Google Scholar 

  • Nix LE, Villiers K (1985) Tracheid differentiation in southern pines during the dormant season. Wood Fiber Sci 17:397–403

    Google Scholar 

  • Novak K, De Luís M, Raventós J, Čufar K (2013) Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees 27:927–936

    Article  CAS  Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in locally heated stems of the evergreen conifer. Planta 212:684–691

    Article  CAS  PubMed  Google Scholar 

  • Parker ML, Henoch WES (1971) The use of Engelmann spruce latewood density for dendrochronological purposes. Can J For Res 1:90–98

    Article  Google Scholar 

  • Piermattei A, Garbarino M, Urbinati C (2014) Structural attributes, tree-ring growth and climate sensitivity of Pinus nigra Arn. at high altitude: common patterns of a possible treeline shift in the central Apennines (Italy). Dendrochronologia 32:210–219

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152(1):1–12

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707

    Article  Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation: a review. IAWA Journal 17:269–310

    Article  Google Scholar 

  • Schmitt U, Koch G, Grünwald C, Čufar K, Gričar J (2003) Wall structure of terminal latewood tracheids of healthy and declining silver fir trees in the Dinaric region, Slovenia. IAWA J 24(1):41–51

    Article  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Nat Acad Sci USA 100:10096–10101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schweingruber FH (1980) Dichteschwankungen in Jahrringen von Nadelhölzern in Beziehung zu klimatisch-ökologischen Faktoren, oder das Problem der falschen Jahrringe. Ber Eidg Anst Forstl Versuchswes 213:1–35

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment dendroecology. Birmendorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Verlag Paul Haupt, Berne

    Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Springer-Verlag, Berlin Heidelberg, New York, p 271

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Braker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Sutton A, Tardif J (2005) Distribution and anatomical characteristics of white rings in Populus tremuloides. IAWA J 26(2):221–238

    Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings, Images of past and future environments. Springer, Berlin, Heidelberg, New York, p 350

    Google Scholar 

  • Waito J, Conciatori F, Tardif JC (2013) Frost rings and white earlywood rings in Picea mariana trees from the boreal plains, central Canada. IAWA J 34(1):71–87

    Article  Google Scholar 

  • Wang L, Payette S, Bégin Y (2000) A quantitative definition of light rings in black spruce (Picea mariana) at the arctic treeline in northern Québec, Canada. Arct Antarct Alp Res 32(3):324–330

    Article  Google Scholar 

  • Wilson BF, Wodzicki TJ, Zahner R (1966) Differentiation of cambial derivatives: proposed terminology. Forest Sci 12:438–440

    Google Scholar 

  • Wimmer R, Strumia G, Holawe F (2000) Use of false rings in Austrian pine to reconstruct early growing season precipitation. Can J For Res 30:1691–1697

    Article  Google Scholar 

  • Wodzicki TJ (2001) Natural factors affecting wood structure. Wood Sci Technol 35:5–26

    Article  CAS  Google Scholar 

Download references

Author contribution statement

Alma Piermattei and Alan Crivellaro performed fieldwork, collected data, conducted analyses and wrote the manuscript; Marco Carrer and Carlo Urbinati supervised the analyses and contributed to the preparation and the overall revision of the manuscript.

Acknowledgments

We wish to thank Prof. Malcolm Hughes and three anonymous reviewers for helpful suggestions and for the text revision, which significantly improved the manuscript. We also like to thank: the Sirente-Velino Regional Park staff for sampling authorization and field work assistance; Dr. Bruno Petriccione of the State Forest Service at L’Aquila for field assistance; the Marche Polytechnic University TreeringLab staff (Dr. Matteo Garbarino) and collaborators (Dr. Emidia Santini, Marco Altieri) for field and laboratory work. Pinus nigra research at treeline was partially supported by the Marche Polytechnic University “2012 RSA n. 7170 project” (Forests and Climate Change). Alan Crivellaro received financial support from the University of Padova (“Assegno di Ricerca Junior” CPDr124554/12).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Piermattei.

Additional information

Communicated by M. Shane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piermattei, A., Crivellaro, A., Carrer, M. et al. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29, 613–620 (2015). https://doi.org/10.1007/s00468-014-1107-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1107-x

Keywords

Navigation