Skip to main content

Advertisement

Log in

Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tree-ring studies may help better understand climate variability and extreme climate event frequency and are especially useful in regions where detailed meteorological records lack. We studied the effect of droughts and unusually cold periods on Pinus sylvestris tree-ring width and wood anatomy. Study sites were selected along an altitudinal gradient on Vitosha Mountain, Bulgaria. Drought conditions caused the formation of narrow tree rings or light rings if the drought occurred in July–August at the lower altitude sites. In years with droughts in June and the first half of July, followed by precipitation in the middle of July, intra-annual density fluctuations (IADFs) were formed. Trees in the zone with optimal growth conditions produced fewer light rings and narrow rings in years with either strongest droughts or unusually cold summers. At the timberline zone, low summer temperature triggered narrow tree rings and light rings. Frost rings were formed when there was a drop in temperatures below the freezing point in the second half of May or at the beginning of June. Our findings show that studies of tree-ring anatomy may contribute to obtain further knowledge about extreme climatic events in the Balkan Peninsula and in other regions where meteorological data lack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonova GF, Cherkashin VP, Stasova VV, Varaksina TN (1995) Daily dynamics in xylem cell radial growth of Scots pine (Pinus sylvestris L.). Trees Struct Funct 10(1):24–30. doi:10.1007/bf00197776

    Google Scholar 

  • Bogino S, Bravo F (2009) Climate and intraannual density fluctuations in Pinus pinaster subsp. mesogeensis in Spanish woodlands. Can J For Res 39(8):1557–1565. doi:10.1139/x09-074

    Article  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Change 40(1–2):11–26. doi:10.1016/s0921-8181(03)00095-x

    Article  Google Scholar 

  • Brunstein FC (1996) Climatic significance of the bristlecone pine latewood frost-ring record at Almagre Mountain, Colorado, U.S.A. Arct Alp Res 28(1):65–76

    Article  Google Scholar 

  • Büntgen U, Brázdil R, Frank D, Esper J (2010) Three centuries of Slovakian drought dynamics. Clim Dyn 35(2):315–329. doi:10.1007/s00382-009-0563-2

    Article  Google Scholar 

  • Camarero J, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees. Arct Alp Res 30(1):1–10

    Article  Google Scholar 

  • Campelo F, Nabais C, Freitas H, Gutiérrez E (2007) Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64(2):229–238

    Article  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Braker OU, Schoch W, Innes J (2003) Identification, measurement and interpretation of tree rings in woody species from mediterranean climates. Biol Rev 78(01):119–148. doi:10.1017/S1464793102006000

    Article  PubMed  Google Scholar 

  • Cook E (1985) A time series analysis approach to tree ring standardization. University of Arizona, USA

    Google Scholar 

  • Cook E, Kairiukstis L (1990) Methods of dendrochronology—applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and delta C-13 within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA J 28(1):61–74

    Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23(3):121–132. doi:10.1016/j.dendro.2005.10.002

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62(8):2763–2771. doi:10.1093/jxb/erq443

    Article  PubMed  CAS  Google Scholar 

  • Filion L, Payette S, Gauthier L, Boutin Y (1986) Light rings in subarctic conifers as a dendrochronological tool. Quatern Res 26(2):272–279. doi:10.1016/0033-5894(86)90111-0

    Article  Google Scholar 

  • Fritts H (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gindl W (1999) Climate significance of light rings in timberline spruce (Picea abies), Austrian Alps. Arct Antarct Alp Res 31(3):242–246

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2001) Effects of altitude on tracheid differentiation and lignification of Norway spruce. Can J Bot 79(7):815–821

    Google Scholar 

  • Glerum C, Farrar JL (1966) Frost ring formation in the stems of some coniferous species. Can J Bot 44(7):879–886. doi:10.1139/b66-103

    Article  Google Scholar 

  • Grabner M, Cherubini P, Rozenberg P, Hannrup B (2006) Summer drought and low earlywood density induce intra-annual radial cracks in conifers. Scand J For Res 21(2):151–157. doi:10.1080/02827580600642100

    Article  Google Scholar 

  • Gruber A, Zimmermann J, Wieser G, Oberhuber W (2009) Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann For Sci 66:503. doi:10.1051/forest/2009038

    Google Scholar 

  • Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30(4):490–501. doi:10.1093/treephys/tpq003

    Article  PubMed  Google Scholar 

  • Grudd H, Briffa KR, Karlén W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12(6):657–665. doi:10.1191/0959683602hl578rp

    Article  Google Scholar 

  • Hantemirov RM, Gorlanova LA, Shiyatov SG (2004) Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeogr Palaeoclimatol Palaeoecol 209(1–4):155–164. doi:10.1016/j.palaeo.2003.12.023

    Article  Google Scholar 

  • Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology: the state of the art. Dendrochronologia 20(1–2):95–116. doi:10.1078/1125-7865-00011

    Article  Google Scholar 

  • Ilchev I (2005) The rose of the Balkans (a short history of Bulgaria). Colibri, Sofia

    Google Scholar 

  • Koleva E, Alexandrov V, Slavov N (2004) Drought periods during XXth century in Bulgaria. In: Proceedings of BALWOIS 2004, Ohrid, FY Republic of Macedonia, 25–29 May 2004, pp 1–7

  • La Marche V, Hirschboeck K (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126

    Article  Google Scholar 

  • Liang E, Eckstein D (2006) Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytol 171(4):783–791. doi:10.1111/j.1469-8137.2006.01775.x

    Article  PubMed  Google Scholar 

  • Limpe JR (1986) The Bulgarian economy in the twentieth century. Croom Helm, Buckenham

    Google Scholar 

  • Mitchell T, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees Struct Funct 24(5):887–898. doi:10.1007/s00468-010-0458-1

    Article  Google Scholar 

  • Osborn T, Briffa K, Jones P (1997) Adjusting variance for sample-size in tree-ring chronologies and other regional-mean timeseries. Dendrochronologia 15:1–10

    Google Scholar 

  • Palmer W (1965) Meteorological drought. U.S. Weather Bureau. NOAA Library and Information Services Division, Washington

    Google Scholar 

  • Panayotov M (2007) Influence of ecological factors on the growth of the tree species from Pinaceae family at the Bulgarian treeline. University of Forestry, Sofia

    Google Scholar 

  • Panayotov M, Yurukov S (2007) Tree ring chronology from Pinus peuce in Pirin Mts and the possibilities to use it for climate analysis. Phytologia Balcanica 13(3):313–320

    Google Scholar 

  • Panayotov M, Bebi P, Trouet V, Yurukov S (2010) Climate signal in tree-ring chronologies of Pinus peuce and Pinus heldreichii from the Pirin Mountains in Bulgaria. Trees Struct Funct 24(3):479–490. doi:10.1007/s00468-010-0416-y

    Article  Google Scholar 

  • Parry M, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) IPCC 2007, climate change 2007: impacts, adaptation and vulnerability. In: Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 976

  • Raev I, Knight C, Staneva M (2003) Drought in Bulgaria—a contemporary analogue for climate change—natural, economical and social aspects of the dry period 1982–1994. BAS, Sofia

    Google Scholar 

  • Richardson D (2000) Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge

  • Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31(1):18–31. doi:10.1139/x00-126

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21(1):33–39. doi:10.1078/1125-7865-00034

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Griçar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17(6):696–707. doi:10.1111/j.1466-8238.2008.00417.x

    Article  Google Scholar 

  • Schulman E (1939) Classification of false annual rings in West Texas pines. Tree-Ring Bull 6:11–13

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt Verlag, Berne, Switzerland

    Google Scholar 

  • Schweingruber FH, Eckstein D, Bachet S, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38. Article-id:4413712

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Stefanoff B (1939) La courverture vegetale de Vitocha comme objet de l’elevage, de la defense et de l’utilisation. Annuaire de l’Universite de Sofia, Livre 2 - Silviculture:225–256

  • Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago, Chicago

    Google Scholar 

  • Swetnam T, Thompson M, Sutherland E (1985) Using dendrochronology to measure radial growth of defoliated trees. USDA Forest Service Agricultural Handbook No. 639

  • Thabeet A, Vennetier M, Gadbin-Henry C, Denelle N, Roux M, Caraglio Y, Vila B (2009) Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees Struct Funct 23(4):843–853. doi:10.1007/s00468-009-0326-z

    Article  Google Scholar 

  • Trouet V, Panayotov M, Ivanova A, Frank D (2012) A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (ad 1768–2008). Holocene 22:887–898. doi:10.1177/0959683611434225

    Article  Google Scholar 

  • van Der Schrier G, Briffa K, Jones P, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19(12):2818–2834. doi:10.1175/JCLI3734.1

    Article  Google Scholar 

  • van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(15):L15701. doi:10.1029/2005gl023110

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees Struct Funct 23(2):257–265. doi:10.1007/s00468-008-0273-0

    Article  Google Scholar 

  • Wells N (2003) PDSI users manual version 2.0. National Agricultural Decision Support System, Nebraska-Lincoln

  • Whitmore FW, Zahner R (1967) Evidence for a direct effect of water stress on tracheid cell wall metabolism in pine. For Sci 13(4):397–400

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol 23(2):201–213. doi:10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2

    Article  Google Scholar 

  • Xoplaki E, Maheras P, Luterbacher J (2001) Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Climatic Change 48:581–615

    Article  CAS  Google Scholar 

  • Yamaguchi D, Filion L, Savage M (1993) Relationship of temperature and light ring formation at subarctic treeline and implications for climate reconstruction. Quatern Res 39(2):256–262

    Article  Google Scholar 

  • Zahariev T (1930) Contribution to the study of drought influence on the growth of some tree species. Zemizdat, Sofia

    Google Scholar 

Download references

Acknowledgments

This study was supported by project 124/07.04.2005 of the University of Forestry in Sofia and project DTK 02/2/2010 of the National Science Fund of Bulgaria. We would like to thank Peter Bebi from the WSL Institute for Snow and Avalanche Research SLF for comments and suggestions. Silvia Dingwall and Valerie Trouet assisted us with language and style improvement. We are also grateful to Mrs. Pravda Dimitrova and Mrs. Irina Ivanova from the National Meteorological Institute in Sofia for assistance in obtaining climate data records and Hristo Berov from Sofia University “St. Kliment Ohridski” for useful comments on socio-economic effects of climate extremes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momchil Panayotov Panayotov.

Additional information

Communicated by A. Braeuning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panayotov, M.P., Zafirov, N. & Cherubini, P. Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees 27, 211–227 (2013). https://doi.org/10.1007/s00468-012-0789-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0789-1

Keywords

Navigation