Skip to main content
Log in

Net NH4 + and NO3 flux, and expression of NH4 + and NO3 transporters in roots of Picea glauca

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Insights into the physiology of nitrogen (N) uptake help us to understand the adaption of boreal coniferous forests to their environment. We compared fluxes of nitrate and ammonium in white spruce [Picea glauca (Moench) Voss] roots, measured using a non-invasive microelectrode ion flux measurement system (MIFE), and transcript abundance of ammonium and nitrate transporter genes in roots, determined by real time PCR. Seedlings were pretreated with water, or 50 μM or 1,500 μM NH4NO3 + 200 μM CaSO4 + 25 μM KH2PO4. Measurements were made on seedling roots 0–5, 5–10, 10–20 and 20–30 mm from the root tip. As ammonium and nitrate transporter family members in spruce are still uncharacterized, primers for real time PCR were designed to cover one family with each set of primers (AMT1, AMT2, NRT1, NRT2). The expression patterns obtained by real time PCR differed significantly among transporter family, treatments and root segments. Expression of AMT1 did not show a relationship with distance from the root tip, but the expression of AMT2 was generally greater 0–5 mm from the root tip than in segments farther from the tip. Expression of NRT1 was greatest 10–30 mm from the root tip, while expression of NRT2 was greatest 5–10 mm from the tip in all treatments, except the 1,500 μM NH4NO3 treatment. MIFE measurements showed the highest N uptake and proton efflux near the root tip and declining fluxes with increased distance from the root tip in the 50 μM N treatment. Significant net ammonium efflux was observed from some root segments in the 1,500 μM N treatment. Transporter gene expression and ion fluxes were not correlated. Though the measured net fluxes of ammonium were greater than the measured net fluxes of nitrate, the nitrate transporters were, in general, more highly expressed than the ammonium transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aslam M, Travis RL, Huffaker RC (1992) Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol 99:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Behl R, Tischner R, Raschke K (1988) Induction of a high capacity nitrate uptake mechanism in barley roots prompted by nitrate uptake through a constitutive low capacity mechanism. Planta 176:235–240

    Article  CAS  Google Scholar 

  • Beinhauer EM (2009) The effect of shoot removal on the net fluxes of hydrogen, ammonium and nitrate in Douglas-fir (Pseudotsuga menziesii) and soybean (Glycine max) roots. Dissertation. University of Victoria

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trend Plant Sci 11:529–534

    Article  CAS  Google Scholar 

  • Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4 + cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci USA 98:4255–4258

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trend Plant Sci 3:389–395

    Article  Google Scholar 

  • D’Apuzzo E, Rogato A, Simon-Rosin U, El Alaoui H, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, Chiurazzi M (2004) Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential and spatial expression. Plant physiol 134:1763–1774

    Article  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1992) Solute transport in plants. Blackie A & P, London

    Book  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wirén N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    PubMed  CAS  Google Scholar 

  • Gessler A, Schneider S, Weber P, Hanemann U, Rennenberg H (1998a) Soluble N compounds in trees exposed to high loads of N: a comparison between the roots of Norway spruce (Picea abies) and beech (Fagus sylvatica) trees grown under field conditions. New Phytol 138:385–399

    Article  CAS  Google Scholar 

  • Gessler A, Schneider S, Von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998b) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    Article  CAS  Google Scholar 

  • Glass ADM, Siddiqi MY (1995) Nitrogen absorption by plant roots. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Pub Co, New Delhi, pp 21–56

    Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kronzucker HJ, Okamoto M, Rawat S, Siddiqi MY, Silim S, Vidmar JJ, Zhuo D (2001) Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J Plant Nutr Soil Sci 164:199–207

    Article  CAS  Google Scholar 

  • Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rawat S, Siddiqi MY, Unkles SE, Vidmar JJ (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 370:855–864

    Article  Google Scholar 

  • Hachiya T, Mizokami Y, Miyata K, Tholen D, Watanabe CK, Noguchi K (2011) Evidence for a nitrate-independent function of the nitrate sensor NRT1.1 in Arabidopsis thaliana. J Plant Res 124:425–430

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BJ, Robbins S (2010) pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots. Physiol Plant 138:238–247

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BJ, Boukcim H, Plassard C (2008) A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources. Plant Cell Environ 31:278–287

    Article  PubMed  CAS  Google Scholar 

  • Kaiser BN, Rawat SR, Siddiqi MY, Masle J, Glass ADM (2002) Functional analysis of an Arabidopsis T-DNA “knockout” of the high-affinity NH4 + transporter AtAMT1;1. Plant Physiol 130:1263–1275

    Article  PubMed  CAS  Google Scholar 

  • Kamminga-van Wijk C, Prins HBA (1993) The kinetics of NH4 + and NO3 uptake by Douglas fir from single N-solutions and from solutions containing both, NH4 + and NO3 . Plant Soil 151:91–96

    Article  CAS  Google Scholar 

  • Kolosova N, Miller B, Ralph S, Ellis BE, Douglas C, Ritland K, Bohlmann J (2004) Isolation of high-quality RNA from gymnosperm and angiosperm trees. Biotechniques 35:821–824

    Google Scholar 

  • Kreuzwieser J, Herschbach C, Stulen I, Wiersema P, Vaalburg W, Rennenberg H (1997) Interactions of NH4 + and L-glutamate with NO3 + transport processes of non-mycorrhizal Fagus sylvatica roots. J Exp Bot 48:1431–1438

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Stulen I, Wiersema P, Vaalburg W, Rennenberg H (2000) Nitrate transport processes in Fagus-Laccaria-Mycorrhizae. Plant Soil 220:107–117

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1995) Kinetics of NO3 influx in spruce. Plant Physiol 109:319–326

    PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1996) Kinetics of NH4 + influx in spruce. Plant Physiol 110:773–779

    PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Britto DT (2003) Root ammonium transporter efficiency as a determinant in forest colonization patterns: an hypothesis. Physiol Plant 117:164–170

    Article  CAS  Google Scholar 

  • Lavoie N, Vézina LP, Margolis HA (1992) Absorption and assimilation of nitrate and ammonium ions by jack pine seedlings. Tree Physiol 11:171–183

    PubMed  CAS  Google Scholar 

  • Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA 102:13693–13698

    Article  PubMed  CAS  Google Scholar 

  • Loqué D, von Wirén N (2004) Regulatory levels for the transport of ammonium in plant roots. J Exp Bot 401:1293–1305

    Article  Google Scholar 

  • Ludewig U, von Wirén N, Frommer WB (2002) Uniport of NH4 + by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem 16:13548–13555

    Article  Google Scholar 

  • Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El Bakkoury M, Marini AM, André B, Hamacher T, Boles E, von Wirén N, Frommer WB (2003) Homo-and hetero-oligomerization of ammonium transporter-1 NH4 + uniporters. J Biol Chem 278:45603–45610

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Häussling M, George E (1991) Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5:14–21

    Article  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990) Evidence for cotransport of nitrate and protons in maize roots II. Measurement of NO3 and H+ fluxes with ion-selective microelectrodes. Plant Physiol 93:290–294

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe RJ, Nault J, Hawkins BJ (2011) Adaptations to nitrogen form: comparing inorganic nitrogen and amino acid availability and uptake by four temperate forest plants. Can J For Res 41:1626–1637

    Article  CAS  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signaling. J Exp Bot 58:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo D, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kumar A, Li WB, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-Affinity Nitrate Transport in Roots of Arabidopsis Depends on Expression of the NAR2-Like Gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53:825–833

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 9:2002–2007

    Google Scholar 

  • Plassard C, Guérin-Laguette A, Véry A-A, Casarin V, Thibaud J-B (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant Cell Environ 25:75–84

    Article  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H, Geßler A (1999) Consequences of N deposition to Forest Ecosystems. Water Air Soil Pollut 116:47–64

    Article  CAS  Google Scholar 

  • Rennenberg H, Schneider S, Weber P (1996) Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. J Exp Bot 47:1491–1498

    Article  CAS  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23

    Article  PubMed  CAS  Google Scholar 

  • Scherrom P, Plassard C (1988) Nitrogen nutrition of non-mycorrhized maritime pine Pinus pinaster grown on nitrate or ammonium. Plant Physiol Biochem 26:261–270

    Google Scholar 

  • Shabala SN, Newman IA (1997) H+ flux kinetics around plant roots after short-term exposure to low temperature: identifying critical temperatures for plant chilling tolerance. Plant Cell Environ 20:1401–1410

    Article  CAS  Google Scholar 

  • Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies of the uptake of nitrate in barley. I: Kinetics of 13NO3-influx. Plant Physiol 93:1426–1432

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Stewart GR (1985) Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Plant Physiol 64:133–140

    Article  CAS  Google Scholar 

  • Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK (2002) Characterization of Arabidopsis AtAMT2, a high affinity ammonium transporter of the plasma membrane. Plant Physiol 130:1788–1796

    Article  PubMed  CAS  Google Scholar 

  • Sorgonà A, Lupini A, Mercati F, Di Dio L, Sunseri F, Abenavoli MR (2011) Nitrate uptake along the maize primary root: and integrated physiological and molecular approach. Plant Cell Environ 34:1127–1140

    Article  PubMed  Google Scholar 

  • Taylor AR, Bloom AJ (1998) Ammonium, nitrate, and proton fluxes along the maize root. Plant Cell Environ 21:1255–1263

    Article  CAS  Google Scholar 

  • Trueman LJ, Richardson A, Forde BG (1996) Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene 175:223–231

    Article  PubMed  CAS  Google Scholar 

  • Von Wirén N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261

    Google Scholar 

Download references

Acknowledgments

The authors thank Neil von Wittgenstein for poplar NRT similarity analysis. BJH acknowledges funding from the Natural Sciences and Engineering Research Council of Canada supporting the portion of the work conducted at the University of Victoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hawkins.

Additional information

Communicated by R. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, A., Ehlting, B., Ehlting, J. et al. Net NH4 + and NO3 flux, and expression of NH4 + and NO3 transporters in roots of Picea glauca . Trees 26, 1403–1411 (2012). https://doi.org/10.1007/s00468-012-0700-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0700-0

Keywords

Navigation